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SuperflexPy

SuperflexPy is an open-source Python framework for constructing conceptual
hydrological models for lumped and semi-distributed applications.

SuperflexPy builds on our 10 year experience with the development and
application of Superflex [https://doi.org/10.1029/2010WR010174], including
collaborations with colleagues at the Eawag (Switzerland), TU-Delft
(Netherlands), LIST (Luxembourg), University of Adelaide (Australia), and
others. The SuperflexPy framework offers a brand new implementation of
Superflex, allowing the modeler to build fully customized, spatially-distributed
hydrological models.

Thanks to its object-oriented architecture, SuperflexPy can be easily
extended to meet your modelling requirements, including the creation of new
components with customized internal structure, in just a few lines of Python
code.

Constructing a hydrological model is straightforward with SuperflexPy:


	inputs and outputs are handled directly by the modeler using common Python
libraries (e.g. Numpy or Pandas). The modeller can use hence data files of
their own design, without the need to pre- and/or post- process
data into text formats prescribed by the framework itself;


	the framework components are declared and initialized through a Python script;


	the framework components are implemented as classes with built-in functionalities for
handling parameters and states, routing fluxes, and solving the model
equations (e.g. describing reservoirs, lag functions, etc.);


	the numerical implementation is separated from the conceptual model, allowing
the use of different numerical methods for solving the model equations;


	the framework can be run at multiple levels of complexity, from a
single-bucket model to a model that represents an entire river network;


	the framework is available as an open source Python package from
Github [https://github.com/dalmo1991/superflexPy];


	the framework can be easily interfaced with other Python modules for
calibration and uncertainty analysis.





Team

SuperflexPy is developed and maintained by researchers in the
Hydrological Modelling Group [https://www.eawag.ch/en/department/siam/main-focus/hydrological-modelling/]
at Eawag [https://www.eawag.ch], with the support of external collaborators.

The core team consists of:


	Dr. Marco Dal Molin [https://www.linkedin.com/in/dalmolma] (implementation and design)


	Dr. Fabrizio Fenicia [https://www.eawag.ch/en/aboutus/portrait/organisation/staff/profile/fabrizio-fenicia/show/]
(design and supervision)


	Prof. Dmitri Kavetski [https://www.adelaide.edu.au/directory/dmitri.kavetski]
(design and supervision)






Stay in touch

If you wish to receive emails about ongoing SuperflexPy developments,
please subscribe [https://forms.gle/utLbF6KWqvqS7LHZ7] to our mailing list.


Note

Using SuperflexPy requires a general knowledge of Python and Numpy.
Other Python libraries may be needed for pre- and post- processing of
the data.

In line with the Python terminology, we will use the word define
when referring to the definition of a class, and initialize when
referring to the creation of an instance of a class, i.e. an object.
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Installation

SuperflexPy is implemented using Python 3 (version 3.7.3). It is not compatible
with Python 2.

SuperflexPy is available as a Python package at
PyPI repository [https://pypi.org/project/superflexpy]

The simplest way to install SuperflexPy is to use the package installer for
Python (pip). Open the operating system command prompt and run the command

pip install superflexpy





To upgrade to a newer SuperflexPy version (when available), run the following command

pip install --upgrade superflexpy






Dependencies

SuperflexPy requires the following Python packages


	Numpy [https://docs.scipy.org/doc/numpy/user/install.html]


	Numba [https://numba.pydata.org/numba-doc/dev/user/installing.html]




All dependencies are available through pip and will be installed automatically
when installing SuperflexPy.

Note that Numba is required only if the modeler wishes to use the Numba
optimized implementation of the numerical solvers. GPU acceleration (CUDA) is
currently not supported but will be explored in future versions.
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Software organization and contribution

[image: _images/schematic_with_logo.png]
The SuperflexPy framework comprises the following components:


	Source code: Latest version of all the code necessary to use the
framework. The source code would normally be accessed only by advanced
users, e.g. to understand the internal organization of the framework, to install
manually the latest version, to extend the framework with new
functionality, etc.


	Packaged release: Latest stable version of the framework available for
users.


	Documentation: Detailed explanation of the framework.


	Examples: Introduction to SuperflexPy for a new user, providing working
models and demonstrating potential applications.


	Scientific references: Publications that present and/or use
the framework in scientific contexts.




The source code, documentation, and examples are part of the official repository
of SuperflexPy hosted on GitHub [https://github.com/dalmo1991/superflexPy].
A user who wishes to read the source code and/or modify any aspect of
SuperflexPy (source code, documentation, and examples) can do it using GitHub.

New releases of the software are available from the official Python Package
Index (PyPI), where SuperflexPy has a
dedicated page [https://pypi.org/project/superflexpy/].

The documentation builds automatically from the
source folder [https://github.com/dalmo1991/superflexPy/tree/master/doc] on
GitHub and is published online in
Read the Docs [https://superflexpy.readthedocs.io/].

Examples are available on GitHub as Jupyter notebooks. These examples can be
visualized statically or run in a sandbox environment (Binder). Refer to Examples for
a list of the available examples.

The scientific publication introducing SuperflexPy has been published in
Geoscientific Model Development (link [https://doi.org/10.5194/gmd-14-7047-2021]).


Contributions

Contributions to the framework can be made in the following ways:


	Submit issues on bugs, desired features, etc;


	Solve open issues;


	Extend the documentation with new demos and examples;


	Extend and/or modify the framework;


	Use and cite the framework in your publications.




Code contribution by external users will be mainly additive (i.e., adding new
components, as illustrated in Expand SuperflexPy: Build customized elements and Expand SuperflexPy: Build customized components)
and should include also appropriate testing (Automated testing).

Contributors will maintain authorship of the contributed code and are invited
to include, in all files, their contact information to facilitate future
collaboration. The authors and maintainers of SuperflexPy will undertake a basic
inspection of the contributed code to identify any quality issues.

The typical workflow that should be followed when contributing to a GitHub
project is described
here [https://www.dataschool.io/how-to-contribute-on-github/].

In summary,
the following steps should be followed:


	Fork the SuperflexPy repository to the user GitHub account;


	Clone the fork on the user computer;


	Modify the code, commit the changes, and push them to the GitHub fork of
SuperflexPy;


	Make a pull request on GitHub to the SuperflexPy repository.





Branching scheme of the GitHub repository

Updates to SuperflexPy are made directly in the branch master, which
is the most up-to-date branch. The branch release is used only
for the staging of new software releases and, therefore, code should not be
pushed directly to it.

When a code update is merged from master to release, a
new version of the package is automatically released on PyPI. Remember to update
the version number in the setup.py file to avoid conflicts.

Developers are free to create new branches, but pull requests must be directed to
master and not to release.

Documentation and examples are generated from the master
branch.
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Tip

If interested in reading more about SuperflexPy, please check our
publication [https://doi.org/10.5194/gmd-14-7047-2021] and the page
SuperflexPy in the scientific literature




Principles of SuperflexPy

Hydrological models are widely used in environmental science and engineering for
process understanding and prediction.

Models can differ depending on how the processes are represented (conceptual
vs. physical based models), and how the physical domain is discretized (from
simple lumped configurations to detailed fully-distributed models).

At the catchment scale, conceptual models are the most widely used class of
models, due to their ability to capture hydrological dynamics in a parsimonious
and computationally fast way.


Conceptual models

Conceptual models describe hydrological dynamics directly at the scale of
interest. For example, in catchment-scale applications, they are based on
relationships between catchment storage and outflow. Such models are usually
relatively simple and cheap to run; their simplicity allows extensive
explorations of many different process representations, uncertainty
quantification using Monte Carlo methods, and so forth.

Many conceptual models have been proposed over the last 40 years. These models
have in common that they are composed by general elements such as reservoirs,
lag functions, and connections. That said, existing models do differ from each
other in a multitude of major and minor aspects, which complicates model
comparison and selection.

Model differences may appear on several levels:


	conceptualization: different models may represent a different set of
hydrological processes;


	mathematical model: the same process (e.g. a flux) may be represented by
different equations;


	numerical model: the same equation may be solved using different numerical
techniques.




Several flexible modeling frameworks have been proposed in the last decade to
facilitate the implementation and comparison of the diverse set of hydrological
models.



Flexible modelling frameworks

A flexible modeling framework can be seen as a language for building conceptual
hydrological models, which allows to build a (potentially complex) model from
simpler low-level components.

The main objective of a flexible modeling framework is to facilitate the process
of model building and comparison, giving modelers the possibility to adjust the
model structure to help achieve their application objectives.

Although several flexible modeling frameworks have been proposed in the last
decade, there are still some notable challenges. For example:


	implementation constraints can limit the originally envisaged flexibility of
the framework;


	the choice of numerical model can be fixed;


	the spatial organization can be limited to lumped configurations;


	the ease of use can be limited by a complex software design.




These challenges can impact on usability, practicality and performance, and
ultimately limit the types of modeling problems that can be tackled. The
SuperflexPy framework is designed to address many of these challenges, providing
a framework suitable for a wide range of research and operational applications.



Spatial organization

Hydrologists are increasingly interested in modeling
large catchments where spatial heterogeneity
becomes important. The following categories of spatial model organization can be
distinguished:


	lumped configuration, where the entire physical domain is considered
uniform;


	semi-distributed configuration, where the physical domain is subdivided
into (usually coarse) areal fractions that are assumed to have the same hydrological response
and operate in parallel (usually without connectivity between them);


	fully-distributed configuration, where the physical domain is subdivided
into a (usually fine) grid. This configuration typically includes flux
exchanges between neighboring grid cells.




The lumped approach yields the simplest models, with a low number of parameters
and often sufficiently good predictions. However, the obvious limitation is that
if the catchment properties vary substantially in space, the lumped model will
not capture these variations. Nor can a lumped model produce spatially distributed
streamflow predictions.

The fully-distributed approach typically yields models with a large number of
parameters and high computational demands, usually related to the resolution of
the grid that is used.

The semi-distributed approach is intermediate between the other two approaches
in terms of spatial complexity and number of parameters. A typical example is
the discretisation of the catchment into Hydrological Response Units (HRUs),
defined as catchment areas assumed to behave in a hydrologically “similar” way.
The definition of HRUs represents a modelling choice and depends on the process
understanding available in the catchment of interest.



SuperflexPy

SuperflexPy is a new flexible framework for building hydrological
models. It is designed to accommodate models with a wide range of structural
complexity, and to support spatial configurations ranging from lumped to
distributed. The design of SuperflexPy is informed by the extensive experience
of its authors and their colleagues in developing and applying conceptual
hydrological models.

In order to balance flexibility and ease of use, SuperflexPy is organized in
four different levels, which correspond to different degrees of spatial
complexity:


	elements;


	units;


	nodes;


	network.




The first level is represented by “elements”, which comprise reservoirs, lag
functions, and connections. Elements can represent entire models or individual
model components, and are intended to represent specific processes within the
hydrological cycle (e.g. soil dynamics).

The second level is represented by “units”, which connect together multiple
elements. This level can be used to build lumped models or to represent HRUs
within a spatially distributed model.

The third level is represented by “nodes”, where each node contains several
units that operate in parallel. Nodes can be used to distinguish the behavior of
distinct units within a catchment, e.g., when building a (semi)-distributed
model where the units are used to represent HRUs (defined according to soil,
vegetation, topography, etc).

The fourth level is represented by the “network”, which connects multiple nodes
and routes the fluxes from upstream to downstream nodes. This level enables the
representation of large watersheds and river networks that comprise several
subcatchments with substantial flow routing delays. A SuperflexPy model
configuration can contain only a single network.

Technical details on these components are provided in the Organization of SuperflexPy
page.
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Organization of SuperflexPy

SuperflexPy is designed to operate at multiple levels of complexity, from a
single reservoir to a complex river network.

All SuperflexPy components, namely elements, units, nodes, network, are designed
to operate alone or as part of other components. For this reason, all components
have methods that enable the execution of basic functionality (e.g. parameter
handling) at all levels. For example, consider a unit that contains multiple
elements. The unit will then provide the functionality for setting the parameter
values for its elements.

Note that, programmatically, SuperflexPy component types are classes, and the
actual model components are then class instances (objects).

We will first describe each component type in specific detail, and then
highlight some Generalities that apply to all components.


Elements

Elements represent the basic level of the SuperflexPy. Conceptually, SuperflexPy
uses the following elements: reservoirs, lag functions, and connections.
Elements can be used to represent a complete model structure, or combined
together to form one or more Unit.

Depending on their type, conceptual elements can have parameters and/or states,
can handle multiple fluxes as inputs and/or as outputs, can be designed to
operate with one or more elements upstream or downstream, can be controlled by
differential equations or by a convolution operations, etc.

Programmatically, the conceptual elements can be implemented by extending the
following classes:


	BaseElement: for elements without states and parameters (e.g.,
junctions);


	StateElement: for elements with states but without parameters;


	ParameterizedElement: for elements with parameters but without states
(e.g., junctions);


	StateParameterizedElement: for elements with states and parameters
(e.g., reservoirs and lag functions).




For example, consider the conceptual element “junction”, which sums the fluxes coming
from multiple elements upstream without needing states or parameters. This element can be
built by extending the class BaseElement to implement the method that
sums the fluxes.

To facilitate usage, SuperflexPy provides a set of “pre-packaged” classes that
already implement already most of the functionality needed to specify
reservoirs, lag functions, and connections. The next sections focus on these
classes.


Reservoirs

A reservoir is a storage element described by the differential equation (or,
more generally, a system of differential equations)


\[\frac{\textrm{d}\mathbf{S}}{\textrm{d}t}=\mathbf{I}(\mathbf{\theta}, t)-\mathbf{O}(\mathbf{S}, \mathbf{\theta}, t)\]

where \(\mathbf{S}\) represents the internal states of the reservoir,
\(\mathbf{I}\) represents the sum of all input fluxes, \(\mathbf{O}\) represents the sum of all output fluxes,
and \(\mathbf{\theta}\) represents the parameters that control the behavior
of the reservoir. In most conceptual models, reservoir elements have a single
state variable (representing water storage), however multiple state variables can
be accommodated when necessary (e.g., to represent transport).

SuperflexPy provides the class ODEsElement that contains all the logic
needed to represent an element controlled by a differential equation. The user needs
only to specify the equations defining input and output fluxes.

The differential equation is solved numerically, though analytical solutions
could be possible. The choice of solution method
(e.g. the implicit Euler scheme) is made by the user when initializing the
reservoir element.

SuperflexPy provides several “numerical approximators” to solve decoupled ODEs,
including the implicit and the explicit Euler schemes. The user can either
employ the numerical routines provided by the framework, or implement the
interface necessary to use an external solver (e.g. from scipy), which
may be needed when the numerical problem becomes more complex (e.g. coupled
differential equations). For more information about the numerical solver refer
to the page Numerical implementation.



Lag functions

A lag function is an element that applies a delay to the incoming fluxes. In
mathematical terms, the lag function represents a convolution of the incoming
fluxes with a weight function. Here, the convolution is implemented by distributing the fluxes at a
given time step into the subsequent time steps, according to a weight array.
The same procedure is then repeated over multiple time steps, adding together
the contributions originating from the preceding time steps.

SuperflexPy provides the class LagElement that implements all the
methods needed to represent a lag function. The user only needs to define the
weight array.



Connections

Connection elements are used to link together multiple elements when building a
unit.

SuperflexPy provides several types of connection elements. For example, a
Splitter is used to split the output flux from a single upstream element
and distribute the respective portions to multiple downstream elements.
Conversely, a Junction is used to collect the output fluxes from
multiple upstream elements and feed them into a single downstream element.
Connection elements are designed to operate with an arbitrarily number of fluxes
and upstream/downstream elements.


Splitter

[image: _images/splitter.png]
A Splitter is an element that receives the outputs of a single upstream
element and distributes them to several downstream elements.

The behavior of a splitter in SuperflexPy is controlled by two matrices:
“direction” and “weight”. The direction matrix specifies which input fluxes
contribute (even fractionally) to the downstream elements and in which order.
The weight matrix defines the proportion of each of the input fluxes that goes into
each the downstream element.

In the illustration schematic, element S receives 3 input fluxes, which are coloured
and indexed according to their order: red (index 0), black (index 1), and blue
(index 2). Element E2 receives the black flux as its first input (index 0), the
blue flux as its second input (index 1), and does not receive any portion of the
third flux. Element E3 receives the blue flux as its first input (index 0), the red
flux as its second input (index 1), and does not receive any portion of the black
flux.

This information is represented by the direction matrix \(\mathbf{D}\) as
follows:


\[\begin{split}\mathbf{D}=
\begin{pmatrix}
1 & 2 & \textrm{None}\\
2 & 0 & \textrm{None}
\end{pmatrix}\end{split}\]

The direction matrix is a 2D matrix with as many columns as the number of fluxes
and as many rows as the number of downstream elements. The row index refers to a
downstream element (in this case the first row refers to element E2, and the
second row to element E3). The column index refers to the input fluxes received
by to the downstream element. Note that care must be taken when indexing the
elements and fluxes to correctly reflect the intended model structure.

The values of \(\mathbf{D}\) can be an integer referring to the index of the
input flux to the splitter S, or None if an input flux to the splitter S
does not reach a downstream element.

As such, the direction matrix can be used to select the fluxes and change the
order in which they are transmitted to downstream elements.

Next, we consider the weight matrix \(\mathbf{W}\), which describes the fraction of each flux
directed to each downstream element. The red flux is taken entirely by element
E3, the black flux is taken entirely by element E2, and the blue flux is split
at 30% to E2 and 70% to E3. This information is represented as follows:


\[\begin{split}\mathbf{W}=
\begin{pmatrix}
0 & 1.0 & 0.3\\
1.0 & 0 & 0.7
\end{pmatrix}\end{split}\]

The weight matrix has the same shape as the direction matrix. The row
index refers to the downstream element, in the same order as in the direction
matrix \(\mathbf{D}\), whereas the column index refers to the input flux to
the splitter S.

The elements of \(\mathbf{W}\) represent the fraction of each input flux
received by the splitter S and directed to the downstream element. In the
example, the first downstream element (first row of the matrix \(\mathbf{W}\)) receives 0% of
the first (red) flux, 100% of the second (black) flux, and 30% of the third
(blue) flux.

Note that the columns of the weight matrix should sum up to 1
to ensure conservation of mass.



Junction

[image: _images/junction.png]
A Junction is an element that receives the outputs of several upstream
elements and directs them into a single downstream element.

The behavior of a junction in SuperflexPy is controlled by a direction matrix, which
defines how the incoming fluxes are to be combined (summed) to feed the
downstream element.

In the schematic, element E3 receives 3 input fluxes, which are indexed based
on their order: red (index 0), black (index 1), and blue (index 2). The red flux
comes from both upstream elements (index 0 and 1, respectively); the black flux
comes only from element E1 (index 1); the blue flux comes only from element E2
(index 2). This information is represented by the direction matrix
\(\mathbf{D}\) as follows:


\[\begin{split}\mathbf{D}=
\begin{pmatrix}
0 & 1\\
1 & \textrm{None}\\
\textrm{None} & 0
\end{pmatrix}\end{split}\]

The direction matrix is a 2D matrix that has as many rows as the number of
fluxes and as many columns as number of upstream elements. The row index refers
to the flux (in this case the first row refers to the red flux, the second row
to the black flux, and the third row to the blue flux). The column index refers
to the upstream element input flux to the junction (in this case the first
column refers to element E1, the second column to element E2).

The value of the matrix element can be an integer referring to the index of the
input flux to junction J coming from the specific upstream element, or
None if an input flux to junction J does not come from the upstream element.



Linker

[image: _images/linker.png]
A Linker is an element that can be used to connect multiple elements
upstream to multiple elements downstream without mixing fluxes.

Linkers are useful in SuperflexPy because the structure of the unit is defined
as an ordered list of elements (see Unit). This means that if we want to connect the first
element of a layer to the second element of the following layer (e.g., direct
the output from upstream element E1 to downstream element E4, in the example
above) we have to insert an additional intermediate layer with a linker that
directs the fluxes to the correct downstream element. Further details on the
organization of the units in layers are presented in section Unit.



Transparent

[image: _images/transparent.png]
A transparent element is an element that returns, as output, the same fluxes
that it receives as input. This element is needed to fill “gaps” in the structure
defining a unit. See Unit for further details. An example is shown in
the schematic above where the transparent element is used
to make the two rows have the same number of elements.





Unit

[image: _images/unit.png]
A unit is a collection of multiple connected elements. The unit can be used
either alone, when intended to represent a lumped catchment model, or as part
of a Node, to create a semi-distributed model.

As shown in the schematic, elements are organized as a succession of layers,
from left (upstream) to right (downstream).

The first and last layers must contain only a single element, since the
inputs of the unit are “given” to the first element and the outputs of the unit
are “taken” from the last element.

The order of elements inside each layer defines how they are connected: the
first element of a layer (e.g. element E2 in the schematic) will transfer its outputs to
the first element of the downstream layer (e.g. element E4); the second element of a
layer (e.g. element E3) will transfer its outputs to the second element of the
downstream layer (e.g. element T), and so on.

When the output of an element is split between multiple downstream elements
an additional
intermediate layer with a splitter is needed. For example, element E1 is
intended to provide its outputs to elements E2 and E3. In this case the splitter S has
two downstream elements (E2 and E3); the framework will route the first group of
outputs of the splitter to element E2 and the second group of outputs to element E3.

Whenever there is a “gap” in the structure, a transparent element should be used
to fill the gap. In the example, the output of element E3 is combined with the output
of element E4. Since these elements belong to different layers, making this connection
directly would create a gap in Layer 3. This problem is solved by specifying a
transparent element in Layer 3, i.e., in the same layer as element E4.

Finally, since the unit must have a single element in its last layer, the
outputs of elements E4 and T must be collected using the junction J.

Each element is aware of its expected number of upstream and downstream
elements. For example, a reservoir must have a single upstream element and a
single downstream element, a splitter must have a single upstream element and
potentially multiple downstream elements, and so on. A unit is valid only if all
layers connect to each other using the expected number of elements. In the
example, Layer 1 must have two downstream elements that is consistent with the
configuration of Layer 2.

Elements are copied into the unit. This means that an element that belongs to
a unit is completely independent from the originally defined element and from
any other copy of the same element in other units. This SuperflexPy design
choice ensures that changes to the state or to the parameters of an element
within a given unit will not affect any element outside of that unit. The code
below illustrates this behavior:

1e1 = Element(parameters={'p1': 0.1}, states={'S': 10.0})
2
3u1 = Unit([e1])
4u2 = Unit([e1])
5
6e1.set_parameters({'e1_p1': 0.2})
7u1.set_parameters({'u1_e1_p1': 0.3})
8u2.set_parameters({'u2_e1_p1': 0.4})





In the code, element e1 is included in units u1 and u2.
In lines 6-8 the value of parameter p1 of element e1 is changed
at the element level and at the unit level. Since elements are copied into a
unit, these changes apply to three different elements (in the sense of different
Python objects in memory), the “originally defined” e1 and the copies of
e1 in u1 and u2.

For more information on how to define a unit structure in SuperflexPy, refer to
the page Application: implementation of existing conceptual models, where the framework is used to reproduce some
existing lumped models.



Node

[image: _images/node.png]
A node is a collection of multiple units assumed to operate in parallel. In the
context of semi-distributed models, a node represents a single catchment and
the units represent multiple landscape elements (areas) within the catchment.
A node can be run either alone or as part of a bigger
Network.

The default behavior of nodes is that parameters are shared between
elements of the same unit, even if that unit belongs to multiple nodes. This
SuperflexPy design choice is motivated by the unit being intended to represent
areas that have the same hydrological response. The idea is that the
hydrological response is controlled by the parameters, and therefore elements of
the same unit (e.g. HRU) belonging to multiple nodes should have the same
parameter values.

On the other hand, each node has its own states that are tracked separately
from the states of other nodes. In particular, when multiple nodes that share
the same parameter values receive different inputs (e.g., rainfall), their
states will evolve differently. This SuperflexPy design choice supports the most common use of nodes, which is
the discretisation of a catchment into potentially overlapping HRUs and
subcatchments. Parameters are then assumed constant within HRUs (units), and
inputs are assumed to be constant within subcatchments (nodes).

In term of SuperflexPy code, this behavior is achieved by (1) copying the
states of the elements belonging to the unit when this unit becomes part of a
node; (2) sharing, rather than copying, the parameter values. This means that
changes to the parameter values of an element within a node will affect the
parameter values of that elements of all other nodes that share the same unit.
In contrast, changes to the states will be node-specific.

This default behavior can be changed by setting shared_parameters=False
at the initialization of the node. In this case, all parameters become
node-specific, with no sharing of parameter values even within the same unit.

Refer to the section Simple semi-distributed model for details on how to incorporate
units into nodes.


Routing

[image: _images/node_routing.png]
A node can include routing functions that delay the fluxes. As shown in the
schematic, two types of routing are possible:


	internal routing;


	external routing.




A typical usage of these routing functions in semi-distributed hydrological
modelling is as follows. Internal routing is used to represent delays associated
with the routing of fluxes across the catchment towards the river network.
External routing is used to represent delays associated with the routing of
fluxes within the river network, i.e., from the outlets of the given node to the
inlet of the downstream node.

More generally, routing functions can be used for representing any type of delay
between the units and the node, as well as delays between nodes.

In the default implementation of a node in SuperflexPy, the two routing
functions simply return their input (i.e. no delay is applied). The user can
implement a different behavior, e.g., see section
Adding routing to a node.




Network

[image: _images/network.png]
A network connects multiple nodes into a tree structure, and is typically
intended to develop a distributed model that generates predictions at internal
subcatchment locations (e.g. to represent a “nested” catchment setup).

The connectivity of the network is defined by assigning to each node the
information about its downstream node. The network will then compute the node
output fluxes, starting from the inlets and then moving downstream, calculating
the outflows of the remaining nodes and routing the fluxes towards the outlet.

The network is the only component of SuperflexPy that does not have the
set_input method (see Generalities), because inputs are assumed
to be node-specific and hence have to be assigned to each node within the
network.

A node is inserted (rather than copied) into the network. In other words, we
initialize a node object and then insert it into the network. This node can then
be configured either directly or through the network. Any changes occurring
within the node as part of the network affect also the originally defined node (because they are the same Python object).

The output of the network is a dictionary that contains the output of all nodes
within the network.



Generalities


Common methods

All components share the following methods.


	Parameters and states: each component has its own parameters and/or
states with unique identifiers. Each component of SuperflexPy has methods to
set and get the states and parameters of the component itself as well as the
states and parameters of its contained components:



	set_parameters: change the current parameter values


	get_parameters:  get the current parameter values


	get_parameters_name: get the identifiers of the parameters


	set_states: change the current state values


	get_states: get the current state value


	get_states_name: get the identifiers of the states


	reset_states: reset the states to their initialization value









	Time step: as common in hydrological modeling, inputs and outputs are
assumed to have the same time resolution, i.e., the input and output data
must share the same time stamps. There is no requirement for timestamps to be
uniformly spaced, meaning that the time series can have irregular time step
sizes. In SuperflexPy, all components that require the definition of a time
step (e.g. reservoirs described by a differential equation) contain methods
that set and get the time step size. In case of non-uniform time resolution,
an array of time steps needs to be provided by the user.



	set_timestep: set the time step used in the model. All components
at a higher level (e.g. units) have this method; when called, it applies
the change to all elements within the component;


	get_timestep: returns the time step size used in the model.









	Inputs and outputs: all components have functionalities to receive inputs
and generate outputs.



	set_input: set the component inputs; inputs can be fluxes
(e.g., precipitation) or other relevant variables
(e.g., temperature influencing the behavior of a snow
element).


	get_output: run the component (and all components contained in it)
and return the output fluxes.













Component identifiers

In SuperflexPy, ll parameters, states, and components (except for the network)
are identified using an identifier string assigned by the user. The identifier
string can have an arbitrary length, with the only restriction being that it cannot
contain the underscore _, as this is a special character used internally
by SuperflexPy.

When an element is inserted into a unit or when the unit is inserted into the
node, the identifier of the component is prepended to the name of the parameter
using the underscore _ as separator.

For example, if the element with identifier e1 has the parameter
par1, the name of the parameter becomes, at initialization,
e1_par1. If element e1 is inserted into unit u1, the
parameter name becomes u1_e1_par1, and so on.

In this way, every parameter and state of the model has its own unique
identifier that can be used to change its value from within any component of
the model.



Time varying parameters

In hydrological modelling, time varying parameters can be useful for
representing certain types of model variability, e.g., seasonal phenomena
and/or stochasticity.

SuperflexPy can be used with both constant and time varying parameters.
Parameters can be specified as either scalar float numbers or as Numpy 1D arrays
of the same length as the arrays of input fluxes. In the first case, the parameter will be
interpreted as time constant. In the second case, the parameter will be
considered as time varying and may have a different value at each time step.



Length of the simulation

In SuperflexPy, there is no model parameter controlling the length of the
simulation. The number of model time steps that need to be run is determined
automatically at runtime from the length of the arrays containing the input fluxes. For this reason,
all input data time series must have the same length.



Format of inputs and outputs

The input and output fluxes of all SuperflexPy components are represented using 1D
Numpy arrays.

For the inputs, regardless of the number of fluxes, the method set_input
takes a list of Numpy arrays (one array per flux). The order of arrays inside
the list is important and must follow the indications of the docstring of the
method. All input fluxes must have the same length because the number of time
steps in the model simulation is determined by the length of the input time
series; see also Length of the simulation.

The outputs are also returned as a list of Numpy 1D arrays, using the
get_output method.

Note an important exception for Connections: whenever the number of
upstream or downstream elements is different from one, the set_input or
the get_output methods will use 2D lists of Numpy arrays. This solution
is used to route fluxes between multiple elements.
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Numerical implementation

Reservoirs are the most common elements in conceptual hydrological
models. Reservoirs are controlled by one (or more) ordinary differential
equations (ODEs) of the form


\[\frac{\textrm{d}\mathbf{S}}{\textrm{d}t}=\mathbf{I}(\mathbf{\theta}, t)-\mathbf{O}(\mathbf{S}, \mathbf{\theta}, t)\]

and associated initial conditions.

Such differential equations are usually difficult or impossible to solve
analytically, therefore, numerical methods are employed. These numerical
methods take the form of time stepping schemes.


Available numerical routines to facilitate the solution of ODEs

The current implementation of SuperflexPy conceptualizes the solution
of the ODE as a two-step procedure:


	Construct the discrete-time equations defining the numerical approximation of
the ODEs at a single time step, e.g. using Euler methods.


	Solve the numerical approximation for the storage(s). This step usually require
some iterative procedure since the algebraic equations resulting from point 1
are usually implicit.




These steps can be performed extending two SuperflexPy components:
NumericalApproximator and RootFinder.

SuperflexPy provides three built-in numerical approximators (implicit and explicit
Euler, Runge Kutta 4) and a three root finders (one implementing the Pegasus method,
one the Newton method, and one for explicit algebraic equations).

The suggested configuration, used in several modelling studies with the SUPERFLEX framework,
is to use the Implicit Euler approximation and the Pegasus root finder. This setup,
together with a “one-element-at-a-time” strategy to solve the elements, enables
a very robust solution of the ODEs, since the numerical routines operate on a
single ODE at a time. In such cases, the root finder also operates on a single
algebraic equation at a time. Moreover, the Pegasus root finder implements
bracketing methods, which are guaranteed to converge (to a tolerance within the
common constraints of floating point arithmetic) as long as the initial solution
bounds are known. The Pegasus algorithm is a bracket-based nonlinear solver similar to the well-known Regula Falsi algorithm.
It employs a re-scaling of function values at the bracket endpoints to accelerate
convergence for strongly curved functions. The authors of the paper (Dowell and Jarratt, 1972 [https://doi.org/10.1007/BF01932959])
claim that the algorithm exhibit superior asymptotic
convergence properties to other modified linear methods.

In order to facilitate the convergence of the root finders and to reduce problems
in calibration, we suggest to use smooth flux functions when implementing the elements
(see Kavetski and Kuczera, 2007 [https://doi.org/10.1029/2006wr005195]).
If a user wants to experiment with discontinuous flux function, specific
ODE solution algorithms should be carefully selected.

The following sections describe how to implement extensions of the classes
NumericalApproximator and RootFinder and how to write solver that
interfaces directly with the ODEsElement, bypassing the current architecture.


Creating a customized numerical approximator

A customized numerical approximator can be implemented by extending the class
NumericalApproximator and implementing two methods: _get_fluxes
and _differential_equation.

 1class CustomNumericalApproximator(NumericalApproximator):
 2
 3    @staticmethod
 4    def _get_fluxes(fluxes_fun, S, S0, args, dt):
 5
 6        # Some code here
 7
 8        return fluxes
 9
10    @staticmethod
11    def _differential_equation(fluxes_fun, S, S0, dt, args, ind):
12
13        # Some code here
14
15        return [diff_eq, min_val, max_val, d_diff_eq]





where fluxes_fun is a list of functions used to calculate the fluxes and their derivatives,
S is the state that solves the ODE, S0 is the initial state,
dt is the time step, args is a list of additional arguments used
by the functions in fluxes_fun, and ind is the index of the input
arrays to use.

The method _get_fluxes is responsible for calculating the fluxes after
the ODE has been solved. This method operates with a vector of states.

The method _differential_equation calculates the approximation of the
ODE. It returns the residual of the approximated mass balance equations for a
given value of S, the minimum and maximum bounds for the
search of the solution, and the value of the derivative of the residual of the approximated mass balance equations for a
given value of S w.r.t. S. This method is designed to be interfaced with the root
finder.

For further details, please see the implementation of Implicit and
Explicit Euler.



Creating a customized root finder

A customized root finder can constructed by extending the class
RootFinder implementing the method solve.

1class CustomRootFinder(RootFinder):
2
3    def solve(self, diff_eq_fun, fluxes_fun, S0, dt, ind, args):
4
5        # Some code here
6
7        return root





where diff_eq_fun is a function that calculates the value of the
approximated ODE, fluxes_fun is a list of functions used to calculate
the fluxes and their derivatives, S0 is the initial state, dt is the time step,
args is a list of additional arguments used by the functions in
fluxes_fun, and ind is the index of the input arrays to use.

The method solve is responsible for finding the numerical solution of
the approximated ODE. In case of failure, the method should either raise a
RuntimeError (Python implementation) or return numpy.nan (this
is not ideal but it is the suggested workaround because Numba does not support
exceptions handling).

To understand better how the method solve works, please see the
implementation of the Pegasus and of the Newton root finders that are currently used in the SuperflexPy
applications.



Building a numerical solver from scratch

When implementing more advanced numerical schemes, the usage of NumericalApproximator
and RootFinder may be limiting. One example may be when the user wants
to use a numerical solver from an existing library.

In this case the user has to implement a new class from scratch that implements a solve
and a get_fluxes method. This class interfaces directly with the ODEsElement and
substitutes the combined usage of NumericalApproximator and RootFinder.

 1class CustomODESolver():
 2
 3    # The class may implement other methods
 4
 5    def solve(self, fluxes_fun, S0, dt, args):
 6
 7        # Some code here
 8
 9        return states
10
11    def get_fluxes(self, fluxes_fun, S, S0, dt, args):
12
13        # Some code here
14
15        return fluxes





where fluxes_fun is a list of functions used to calculate
the fluxes and their derivatives, S0 is the initial state, dt is the time step,
args is a list of additional arguments used by the functions in
fluxes_fun (e.g, input fluxes, parameters, etc), and S is this the state of the reservoir.

The solve method is responsible for “assembling” and solving the differential
equations and their derivatives. The fluxes controlling the differential equations can be calculated,
for any possible state and parameters, using the functions contained in
fluxes_fun, which are implemented in the single ODEsElement.
The method returns an array (time series) containing the values of the states
according to the time step dt. It is important to notice that nothing
forbids to calculate the states at intermediate time steps, keeping in mind
the additional error introduced by considering the fluxes constant over dt
(see Sequential solution of the elements and numerical approximations).

The get_fluxes method is responsible for calculating the fluxes, once
the ODEs have already been solved.

SuperflexPy does not implement functioning customized ODEs solvers created from scratch (e.g.,
encapsulating the functionality of external libraries). However, to understand
better how to implement a custom ODEs solver from scratch the user can have a
look at the implementation of the abstract class NumericalApproximator,
which represents itself an ODEs solver implemented from scratch.




Sequential solution of the elements and numerical approximations

The SuperflexPy framework is built on a model representation that maps to a
directional acyclic graph. Model elements are solved sequentially from upstream
to downstream, with the output from each element being used as input to
its downstream elements.

Moreover, inputs and outputs of the elements are considered constant over the
time step dt whereas in reality fluxes vary within the time step; this
choice simplifies the implementation of the framework and is coherent with the
typical format of forcing data such as rainfall, PET, etc, which is tabulated in
discrete steps.

When fixed-step solvers are used (e.g. implicit Euler), this
“one-element-at-a-time” strategy is equivalent to applying the same (fixed-step)
solver to the entire ODE system simultaneously (i.e., no additional
approximation error is introduced), as fixed-step solvers transform the ODE
system into a lower triangular system of nonlinear algebraic equations, which
can be solved using forward elimination. The usage of constant fluxes does not
introduce approximations in this case, since intermediate fluxes are not needed.

However, when solvers with internal substepping are used, the “constant fluxes” choice
introduces additional approximation error, since solvers cannot access the
actual value of the fluxes within the time step but only their approximation
to the average value.

These numerical approximations could be removed only by the coupled solution of the ODEs
system. Alternative solutions could be adopted to reduce the approximation, while
respecting the “one-element-at-a-time” strategy; one option could be, for the elements
to output instead of a single number, an array of values, or a function, or a
specific data structure that allows for returning the values at intermediate time steps. However, all the possibilities
listed in this paragraph are currently not supported by SuperflexPy and not
foreseen as development in the near future.



Computational efficiency with Numpy and Numba

Conceptual hydrological models are often used in computationally demanding
contexts, such as parameter calibration and uncertainty quantification, which
require many model runs (thousands or even millions). Computational efficiency
is therefore an important requirement of SuperflexPy.

Computational efficiency is a potential limitation of pure Python, but
libraries like Numpy and Numba can help in pushing the performance closer to
traditionally fast languages such as Fortran and C.

Numpy provides highly efficient arrays for vectorized operations (i.e.
elementwise operations between arrays). Numba provides a “just-in-time compiler”
that can be used to compile (at runtime) a normal Python method to machine code
that operates efficiently with Numpy arrays. The combined use of Numpy and
Numba is extremely effective when solving ODEs using time stepping schemes, where the method loops through a
vector to perform elementwise operations.

SuperflexPy includes Numba-optimized versions of
NumericalApproximator and RootFinder, which enable efficient
solution of ODEs describing the reservoir elements.

The figure below compares the execution times of pure Python vs. the Numba
implementation, as a function of the length of the time series (upper panel) and
the number of model runs (lower panel). Simulations were run on a laptop (single
thread), using the HYMOD model, solved using the implicit Euler numerical solver.

The plot clearly shows the tradeoff between compilation time (which is zero for
Python and around 2 seconds for Numba) versus run time (where Numba is 30 times
faster than Python). For example, a single run of 1000 time steps takes 0.11
seconds with Python and 1.85 seconds with Numba. In contrast, if the same model is run
100 times (e.g., as part of a calibration) the Python version takes 11.75
seconds while the Numba version takes 2.35 seconds.


Note

The objective of these plots is to give an idea of time that is topically
required to perform common modelling applications (e.g., calibration) with SuperflexPy,
to show the impact of the Numba implementation, and to explain the
tradeoff between compilation and run time. The results do not
have to be considered as accurate measurements of the performance
of SuperflexPy (i.e., rigorous benchmarking).



[image: _images/bench_all.png]
The green line “net numba” in the lower panel express the run time of the Numba
implementation, i.e., excluding the compilation time.
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How to build a model with SuperflexPy

This page shows how to build a complete semi-distributed conceptual model using
SuperflexPy, including:


	how the elements are initialized, configured, and run


	how to use the model at any level of complexity, from single element to
multiple nodes.




All models presented in this page are available as runnable examples (see
Examples).

Examples of the implementation of more realistic models are given in the pages
Application: implementation of existing conceptual models and Case studies.


Importing SuperflexPy

Assuming that SuperflexPy is already installed (see Installation
guide), the elements needed to build the model are imported from the SuperflexPy
package. In this demo, the import is done with the following lines

1from superflexpy.implementation.elements.hbv import PowerReservoir
2from superflexpy.implementation.elements.gr4j import UnitHydrograph1
3from superflexpy.implementation.root_finders.pegasus import PegasusPython
4from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
5from superflexpy.framework.unit import Unit
6from superflexpy.framework.node import Node
7from superflexpy.framework.network import Network





Lines 1-2 import two elements (a reservoir and a lag
function), lines 3-4 import the numerical solver used to solve the reservoir
equation, and lines 5-7 import the SuperflexPy components needed to implement
spatially distributed model.

A complete list of the elements already implemented in SuperflexPy, including
their equations and import path, is available in page List of currently implemented elements. If
the desired element is not available, it can be built following the instructions
given in page Expand SuperflexPy: Build customized elements.



Simplest lumped model structure with single element

[image: _images/SingleReservoir_scheme.png]
The single-element model is composed by a single reservoir governed by the
differential equation


\[\frac{\textrm{d}S}{\textrm{d}t}=P-Q\]

where \(S\) is the state (storage) of the reservoir, \(P\) is the
precipitation input, and \(Q\) is the outflow.

The outflow is defined by the equation:


\[Q = kS^\alpha\]

where \(k\) and \(\alpha\) are parameters of the element.

For simplicity, evapotranspiration is not considered in this demo.

The first step is to initialize the numerical approximator (see
Numerical implementation). In this case, we will use the native Python
implementation (i.e. not Numba) of the implicit Euler algorithm (numerical
approximator) and the Pegasus algorithm (root finder). The initialization can be
done with the following code, where the default settings of the solver are used
(refer to the solver docstring).

1solver_python = PegasusPython()
2
3approximator = ImplicitEulerPython(root_finder=solver_python)





Note that the object approximator does not have
internal states. Therefore, the same instance can be assigned to multiple
elements.

The element is initialized next

1reservoir = PowerReservoir(
2    parameters={'k': 0.01, 'alpha': 2.0},
3    states={'S0': 10.0},
4    approximation=approximator,
5    id='R'
6)





During initialization, the two parameters (line 2) and the single initial state (line 3) are
defined, together with the numerical approximator and the identifier. The
identifier must be unique and cannot contain the character _, see
Component identifiers.

After initialization, we specify the time step used to solve the differential equation and
the inputs of the element.

1reservoir.set_timestep(1.0)
2reservoir.set_input([precipitation])





Here, precipitation is a Numpy array containing the precipitation time series.
The length of the simulation (i.e., the number of time steps to run
the model) is automatically set to the length of the input arrays.

The element can now be run

1output = reservoir.get_output()[0]





The method get_output will run the element for all the time steps (solving the differential
equation) and return a list containing all output arrays of the element. In
this specific case there is only one output array, namely., the flow time series
\(Q\).

The state of the reservoir at all time steps is saved in the attribute state_array
of the element and can be accessed as follows

1reservoir_state = reservoir.state_array[:, 0]





Here, state_array is a 2D array with the number of rows equal to the number of
time steps, and the number of columns equal to the number of states. The order
of states is defined in the docstring of the element.

Finally, the simulation outputs can be plotted using standard Matplotlib functions, as follows

1fig, ax = plt.subplots(2, 1, sharex=True, figsize=(10, 6))
2ax[0].bar(x=range(len(precipitation)), height=precipitation, color='blue')
3ax[1].plot(range(len(precipitation)), output, color='blue', lw=2, label='Outflow')
4ax_bis = ax[1].twinx()
5ax_bis.plot(range(len(precipitation)), reservoir_state, color='red', lw=2, ls='--', label='Reservoir state')





[image: _images/SingleReservoir.png]
Note that the method get_output also sets the element states to their
value at the final time step (in this case 8.98). As a consequence, if the method
is called again, it will use this value as initial state instead of the one
defined at initialization. This enables the modeler to continue the simulation
at a later time, which can be useful in applications where new inputs arrive in
real time. The states of the model can be reset using the method
reset_states.

1reservoir.reset_states()







Lumped model structure with 2 elements

[image: _images/SingleUnit_scheme.png]
We now move to a more complex model structure, where multiple elements are
connected in a unit. For simplicity, we limit the complexity to two elements;
more complex configurations can be found in the Application: implementation of existing conceptual models page.

The unit structure comprises a reservoir that feeds a lag function. The lag
function applies a convolution operation on the incoming fluxes


\[Q_{\textrm{out}}(t)= \int_{0}^{t} Q_{\textrm{in}}(t-\tau)h(\tau, t_{\textrm{lag}})\textrm{d}\tau\]

The behavior of the lag function is controlled by parameter \(t_{\textrm{lag}}\).

First, we initialize the two elements that compose the unit structure

 1reservoir = PowerReservoir(
 2    parameters={'k': 0.01, 'alpha': 2.0},
 3    states={'S0': 10.0},
 4    approximation=approximator,
 5    id='R'
 6)
 7
 8lag_function = UnitHydrograph1(
 9    parameters={'lag-time': 2.3},
10    states={'lag': None},
11    id='lag-fun'
12)





Note that the initial state of the lag function is set to None
(line 10). The element will then initialize the state to an arrays of
zeros of appropriate length, depending on the value of \(t_{\textrm{lag}}\);
in this specific case, ceil(2.3) = 3.

Next, we initialize the unit that combines the elements

1unit_1 = Unit(
2    layers=[[reservoir], [lag_function]],
3    id='unit-1'
4)





Line 2 defines the unit structure: it is a 2D list where the inner level sets
the elements belonging to each layer and the outer level lists the layers.

After initialization, time step size and inputs are defined

1unit_1.set_timestep(1.0)
2unit_1.set_input([precipitation])





The unit sets the time step size for all its elements and transfers the inputs to the
first element (in this example, to the reservoir).

The unit can now be run

1output = unit_1.get_output()[0]





In this code, the unit will call the get_output method of all its elements (from
upstream to downstream), set the inputs of the downstream elements to the output
of their respective upstream elements, and return the output of the last
element.

After the unit simulation has completed, the outputs and the states of its
elements can be retrieved as follows

1r_state = unit_1.get_internal(id='R', attribute='state_array')[:, 0]
2r_output = unit_1.call_internal(id='R', method='get_output', solve=False)[0]





Note that in line 2 we pass the argument solve=False to the function
get_output, in order to access the computed states and outputs without
re-running the reservoir element.

The plot shows the output of the simulation (obtained by plotting
output, r_state, and r_output).

[image: _images/SingleUnit.png]
If we wish to re-run the model, the elements of the unit can be re-set to their initial state

1unit_1.reset_states()







Simple semi-distributed model

[image: _images/SingleNode_scheme.png]
This model is intended to represent a spatially semi-distributed configuration.
A node is used to represent a catchment with multiple areas that
react differently to the same inputs. In this example, we represent 70% of
the catchment using the structure described in Lumped model structure with 2 elements, and the
remaining 30% using a single reservoir.

This model configuration is achieved using a node with multiple units.

First, we initialize the two units and the elements composing them, in the same
way as in the previous sections.

 1reservoir = PowerReservoir(
 2    parameters={'k': 0.01, 'alpha': 2.0},
 3    states={'S0': 10.0},
 4    approximation=approximator,
 5    id='R'
 6)
 7
 8lag_function = UnitHydrograph1(
 9    parameters={'lag-time': 2.3},
10    states={'lag': None},
11    id='lag-fun'
12)
13
14unit_1 = Unit(
15    layers=[[reservoir], [lag_function]],
16    id='unit-1'
17)
18
19unit_2 = Unit(
20    layers=[[reservoir]],
21    id='unit-2'
22)





Note that, once the elements are added to a unit, they become independent,
meaning that any change to the reservoir contained in
unit_1 does not affect the reservoir contained in unit_2 (see
Unit).

The next step is to initialize the node, which combines the two units

1node_1 = Node(
2    units=[unit_1, unit_2],
3    weights=[0.7, 0.3],
4    area=10.0,
5    id='node-1'
6)





Line 2 contains the list of units that belong to the node, and line 3 gives
their weight (i.e. the portion of the node outflow coming from each unit). Line
4 specifies the representative area of the node.

Next, we define the time step size and the model inputs

1node_1.set_timestep(1.0)
2node_1.set_input([precipitation])





The same time step size will be assigned to all elements within the node, and
the inputs will be passed to all the units of the node.

We can now run the node and collect its output

1output = node_1.get_output()[0]





The node will call the method get_output of all its units and aggregate
their outputs using the weights.

The outputs of the single units, as well as the states and fluxes of the
elements composing them, can be retrieved using the method call_internal

1output_unit_1 = node_1.call_internal(id='unit-1', method='get_output', solve=False)[0]
2output_unit_2 = node_1.call_internal(id='unit-2', method='get_output', solve=False)[0]





The plot shows the output of the simulation.

[image: _images/SingleNode.png]
All elements within the node can be re-set to their initial states

1node_1.reset_states()







Semi-distributed model with multiple nodes

[image: _images/Network_scheme.png]
A catchment can be composed by several subcatchments (nodes) connected in a
network. Each subcatchment receives its own inputs, but may share
parameter values with other subcatchments with the same units.

This semi-distributed configuration can be implemented in SuperflexPy by creating a
network with multiple nodes.

First, we initialize the nodes

 1reservoir = PowerReservoir(
 2    parameters={'k': 0.01, 'alpha': 2.0},
 3    states={'S0': 10.0},
 4    approximation=approximator,
 5    id='R'
 6)
 7
 8lag_function = UnitHydrograph1(
 9    parameters={'lag-time': 2.3},
10    states={'lag': None},
11    id='lag-fun'
12)
13
14unit_1 = Unit(
15    layers=[[reservoir], [lag_function]],
16    id='unit-1'
17)
18
19unit_2 = Unit(
20    layers=[[reservoir]],
21    id='unit-2'
22)
23
24node_1 = Node(
25    units=[unit_1, unit_2],
26    weights=[0.7, 0.3],
27    area=10.0,
28    id='node-1'
29)
30
31node_2 = Node(
32    units=[unit_1, unit_2],
33    weights=[0.3, 0.7],
34    area=5.0,
35    id='node-2'
36)
37
38node_3 = Node(
39    units=[unit_2],
40    weights=[1.0],
41    area=3.0,
42    id='node-3'
43)





Here, nodes node_1 and node_2 contain both units, unit_1 and unit_2, but in different
proportions. Node node_3 contains only a single unit, unit_2.

When units are added to a node, the states of the elements within the units
remain independent while the parameters stay linked. In this example the change of
a parameter in unit_1 in node_1 is applied also to
unit_1 in node_2. This
“shared parameters” behavior can be disabled by setting the parameter
shared_parameters to False when initializing the nodes (see
Node)

The network is initialized as follows

1net = Network(
2    nodes=[node_1, node_2, node_3],
3    topology={
4        'node-1': 'node-3',
5        'node-2': 'node-3',
6        'node-3': None
7    }
8)





Line 2 provides the list of the nodes belonging to the network. Lines 4-6 define the
connectivity of the network; this is done using a dictionary with the keys given
by the node identifiers and values given by the single downstream node. The
most downstream node has, by convention, its value set to None.

The inputs are catchment-specific and must be provided to each node.

1node_1.set_input([precipitation])
2node_2.set_input([precipitation * 0.5])
3node_3.set_input([precipitation + 1.0])





The time step size is defined at the network level.

1net.set_timestep(1.0)





We can now run the network and get the output values

1output = net.get_output()





The network runs the nodes from upstream to downstream, collects their outputs,
and routes them to the outlet. The output of the network is a dictionary, with
keys given by the node identifiers and values given by the list of output
fluxes of the nodes. It is also possible to retrieve the internals (e.g. fluxes, states,
etc.) of the nodes.

1output_unit_1_node_1 = net.call_internal(id='node-1_unit-1',
2                                         method='get_output',
3                                         solve=False)[0]





The plot shows the results of the simulation.

[image: _images/Network.png]
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List of currently implemented elements

SuperflexPy provides four levels of components (elements, units, nodes
and network) for constructing conceptual hydrological models. The components
presented in the page Organization of SuperflexPy represent the core of SuperflexPy.
These components can be extended to create customized models.

Most of the customization efforts will be required for elements (i.e.,
reservoirs, lag, and connection elements). This page describes all elements
that have been created and shared by the community of SuperflexPy. These
elements can be used to construct a wide range of model structures.

This section lists elements according to their type, namely


	Reservoir


	Lag elements


	Connections




Within each section, the elements are listed in alphabetical order.


Reservoirs


Interception filter

This reservoir is used to simulate interception in models, including GR4J.
Further details are provided in the page GR4J.

from superflexpy.implementation.elements.gr4j import InterceptionFilter






Inputs


	Potential evapotranspiration \(E^{\textrm{in}}_{\textrm{POT}}\ [LT^{-1}]\)


	Precipitation \(P^{\textrm{in}}\ [LT^{-1}]\)






Outputs from get_output


	Net potential evapotranspiration \(E^{\textrm{out}}_{\textrm{POT}}\ [LT^{-1}]\)


	Net precipitation \(P^{\textrm{out}}\ [LT^{-1}]\)






Governing equations


\[\begin{split}& \textrm{if } P^{\textrm{in}} > E^{\textrm{in}}_{\textrm{POT}}: \\
& \quad P^{\textrm{out}} = P^{\textrm{in}} - E^{\textrm{in}}_{\textrm{POT}} \\
& \quad E^{\textrm{out}}_{\textrm{POT}} = 0 \\ \\
& \textrm{if } P^{\textrm{in}} < E^{\textrm{in}}_{\textrm{POT}}: \\
& \quad P^{\textrm{out}} = 0 \\
& \quad E^{\textrm{out}}_{\textrm{POT}} = E^{\textrm{in}}_{\textrm{POT}} - P^{\textrm{in}}\end{split}\]




Linear reservoir

This reservoir assumes a linear storage-discharge relationship. It
represents arguably the simplest hydrological model. For example, it is used in
the model HYMOD to simulate channel routing and lower-zone storage processes.
Further details are provided in the page HYMOD.

from superflexpy.implementation.elements.hymod import LinearReservoir






Inputs


	Precipitation \(P\ [LT^{-1}]\)






Outputs from get_output


	Total outflow \(Q\ [LT^{-1}]\)






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - Q \\
& Q=kS\end{split}\]




Power reservoir

This reservoir assumes that the storage-discharge relationship is described by a
power function. This type of reservoir is common in hydrological models. For
example, it is used in the HBV family of models to represent the fast
response of a catchment.

from superflexpy.implementation.elements.hbv import PowerReservoir






Inputs


	Precipitation \(P\ [LT^{-1}]\)






Outputs from get_output


	Total outflow \(Q\ [LT^{-1}]\)






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - Q \\
& Q=kS^{\alpha}\end{split}\]




Production store (GR4J)

This reservoir is used to simulate runoff generation in the model GR4J. Further
details are provided in the page GR4J.

from superflexpy.implementation.elements.gr4j import ProductionStore






Inputs


	Potential evapotranspiration \(E_{\textrm{pot}}\ [LT^{-1}]\)


	Precipitation \(P\ [LT^{-1}]\)






Outputs from get_output


	Total outflow \(P_{\textrm{r}}\ [LT^{-1}]\)






Secondary outputs


	Actual evapotranspiration \(E_{\textrm{act}}\ [LT^{-1}]\) get_aet()






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P_{\textrm{s}}-E_{\textrm{act}}-Q_{\textrm{perc}} \\
& P_{\textrm{s}}=P\left(1-\left(\frac{S}{x_1}\right)^\alpha\right) \\
& E_{\textrm{act}}=E_{\textrm{pot}}\left(2\frac{S}{x_1}-\left(\frac{S}{x_1}\right)^\alpha\right) \\
& Q_{\textrm{perc}} = \frac{{x_1}^{1-\beta}}{(\beta-1)}\nu^{\beta-1}S^{\beta} \\
& P_{\textrm{r}}=P - P_{\textrm{s}} + Q_{\textrm{perc}}\end{split}\]




Routing store (GR4J)

This reservoir is used to simulate routing in the model GR4J. Further details
are provided in the page GR4J.

from superflexpy.implementation.elements.gr4j import RoutingStore






Inputs


	Precipitation \(P\ [LT^{-1}]\)






Outputs from get_output


	Outflow \(Q\ [LT^{-1}]\)


	Loss term \(F\ [LT^{-1}]\)






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P-Q-F \\
& Q=\frac{x_3^{1-\gamma}}{(\gamma-1)}S^{\gamma} \\
& F = \frac{x_2}{x_3^{\omega}}S^{\omega}\end{split}\]




Snow reservoir

This reservoir is used to simulate snow processes based on temperature. Further
details are provided in the section Dal Molin et al., 2020, HESS.

from superflexpy.implementation.elements.thur_model_hess import SnowReservoir






Inputs


	Precipitation \(P\ [LT^{-1}]\)


	Temperature \(T\ [°C]\)






Outputs from get_output


	Sum of snow melt and rainfall input \(=P-P_{\textrm{snow}}+M\ [LT^{-1}]\)






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P_{\textrm{snow}}-M \\
& P_{\textrm{snow}}=P\quad\textrm{if } T\leq T_0;\quad\textrm{else } 0 \\
& M = M_{\textrm{pot}}\left(1-\exp\left(-\frac{S}{m}\right)\right) \\
& M_{\textrm{pot}}=kT\quad\textrm{if } T\geq T_0;\quad\textrm{else } 0 \\\end{split}\]




Unsaturated reservoir (inspired to HBV)

This reservoir specifies the actual evapotranspiration as a smoothed threshold
function of storage, in combination with the storage-discharge relationship
being set to a power function. It is inspired by the HBV family of models, where
a similar approach (but without smoothing) is used to represent unsaturated soil
dynamics.

from superflexpy.implementation.elements.hbv import UnsaturatedReservoir






Inputs


	Precipitation \(P\ [LT^{-1}]\)


	Potential evapotranspiration \(E_{\textrm{pot}}\ [LT^{-1}]\)






Outputs from get_output


	Total outflow \(Q\ [LT^{-1}]\)






Secondary outputs


	Actual evapotranspiration \(E_{\textrm{act}}\) get_AET()






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - E_{\textrm{act}} - Q \\
& \overline{S} = \frac{S}{S_{\textrm{max}}} \\
& E_{\textrm{act}}=C_{\textrm{e}}E_{\textrm{pot}}\left(\frac{\overline{S}(1+m)}{\overline{S}+m}\right) \\
& Q=P\left(\overline{S}\right)^{\beta}\end{split}\]




Upper zone (HYMOD)

This reservoir is part of the HYMOD model and is used to simulate the upper soil
zone. Further details are provided in the page HYMOD.

from superflexpy.implementation.elements.hymod import UpperZone






Inputs


	Precipitation \(P\ [LT^{-1}]\)


	Potential evapotranspiration \(E_{\textrm{pot}}\ [LT^{-1}]\)






Outputs from get_output


	Total outflow \(Q\ [LT^{-1}]\)






Secondary outputs


	Actual evapotranspiration \(E_{\textrm{act}}\ [LT^{-1}]\) get_AET()






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - E_{\textrm{act}} - Q \\
& \overline{S} = \frac{S}{S_{\textrm{max}}} \\
& E_{\textrm{act}}=E_{\textrm{pot}}\left(\frac{\overline{S}(1+m)}{\overline{S}+m}\right) \\
& Q=P\left(1-\left(1-\overline{S}\right)^{\beta}\right)\end{split}\]





Lag elements

All lag elements implemented in SuperflexPy can accommodate an arbitrary
number of input fluxes, and apply a convolution based on a weight array that
defines the shape of the lag function.

Lag elements differ solely in the definition of the weight array. The
nature (i.e., number and order) of inputs and outputs depend on the element
upstream of the lag element.

[image: _images/lag1.png]
The weight array can be defined by giving the area below the lag function as a
function of the time coordinate. The maximum lag \(t_{\textrm{lag}}\) must
also be specified. The weights are then given by differences between the values
of the area at consecutive lags. This approach is shown in the figure above,
where the weight \(W_i\) is calculated as the difference between areas
\(A_i\) and \(A_{i-1}\).


Half triangular lag

This lag element implements the element present in the case study
Dal Molin et al., 2020, HESS and used in other Superflex studies.

from superflexpy.implementation.elements.thur_model_hess import HalfTriangularLag






Definition of weight array

The area below the lag function is given by


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \left(\frac{t}{t_{\textrm{lag}}}\right)^2 & \quad \textrm{for } 0< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as


\[w(t_{\textrm{i}}) = A_{\textrm{lag}}(t_{\textrm{i}}) - A_{\textrm{lag}}(t_{\textrm{i-1}})\]




Unit hydrograph 1 (GR4J)

This lag element implements the unit hydrograph 1 of GR4J.

from superflexpy.implementation.elements.gr4j import UnitHydrograph1






Definition of weight array

The area below the lag function is given by


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \left(\frac{t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } 0< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as


\[w(t_{\textrm{i}}) = A_{\textrm{lag}}(t_{\textrm{i}}) - A_{\textrm{lag}}(t_{\textrm{i-1}})\]




Unit hydrograph 2 (GR4J)

This lag element implements the unit hydrograph 2 of GR4J.

from superflexpy.implementation.elements.gr4j import UnitHydrograph2






Definition of weight array

The area below the lag function is given by


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \frac{1}{2}\left(\frac{2t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } 0< t \leq \frac{t_{\textrm{lag}}}{2}\\
&A_{\textrm{lag}}(t) = 1 - \frac{1}{2}\left(2-\frac{2t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } \frac{t_{\textrm{lag}}}{2}< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as


\[w(t_{\textrm{i}}) = A_{\textrm{lag}}(t_{\textrm{i}}) - A_{\textrm{lag}}(t_{\textrm{i-1}})\]





Connections

SuperflexPy implements four connection elements:


	splitter


	junction


	linker


	transparent element




In addition, customized connectors have been implemented to achieve specific
model designs. These customized elements are listed in this section.


Flux aggregator (GR4J)

This element is used to combine routing, exchange and outflow fluxes in the
GR4J model. Further details are provided in the page
GR4J.

from superflexpy.implementation.elements.gr4j import FluxAggregator






Inputs


	Outflow routing store \(Q_{\textrm{RR}}\ [LT^{-1}]\)


	Exchange flux \(Q_{\textrm{RF}}\ [LT^{-1}]\)


	Outflow UH2 \(Q_{\textrm{UH2}}\ [LT^{-1}]\)






Main outputs


	Outflow \(Q\ [LT^{-1}]\)






Governing equations


\[\begin{split}& Q = Q_{\textrm{RR}} + \max(0;Q_{\textrm{UH2}} - Q_{\textrm{RF}}) \\\end{split}\]
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Note

If you build your own SuperflexPy element, we would appreciate
if you share your implementation with the community (see
Software organization and contribution). Please remember to update the
List of currently implemented elements page to make other users aware of your
implementation.




Expand SuperflexPy: Build customized elements

This page illustrates how to create customized elements using the SuperflexPy
framework.

The examples include three elements:


	Linear reservoir


	Half-triangular lag function


	Parameterized splitter




The customized elements presented here are relatively simple, in order to
provide a clear illustration of the programming approach. To gain a deeper
understanding of SuperflexPy functionalities, please familiarize with the code of
existing elements (importing “path” superflexpy.implementation.elements).


Linear reservoir

This section presents the implementation of a linear reservoir element from
the generic class ODEsElement.

[image: _images/reservoir.png]
The reservoir is controlled by the following differential equation


\[\frac{\textrm{d}S}{\textrm{d}t}=P-Q\]

with


\[Q=kS\]

Note that the differential equation can be solved analytically, and (if applied) the
implicit Euler numerical approximation does not require iteration. However, we
will still use the numerical approximator offered by SuperflexPy (see
Numerical implementation) to illustrate how to proceed in a more general case
where analytical solutions are not available.

The SuperflexPy framework provides the class ODEsElement, which has most
of the methods required to implement the linear reservoir element. The class
implementing the reservoir will inherit from ODEsElement and implement
only a few methods needed to specify its behavior.

1import numba as nb
2from superflexpy.framework.element import ODEsElement
3
4class LinearReservoir(ODEsElement):





The first method to implement is the class initializer __init__

 1    def __init__(self, parameters, states, approximation, id):
 2
 3        ODEsElement.__init__(self,
 4                             parameters=parameters,
 5                             states=states,
 6                             approximation=approximation,
 7                             id=id)
 8
 9        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture
10
11        if approximation.architecture == 'numba':
12            self._fluxes = [self._fluxes_function_numba]
13        elif approximation.architecture == 'python':
14            self._fluxes = [self._fluxes_function_python]
15        else:
16            message = '{}The architecture ({}) of the approximation is not correct'.format(self._error_message,
17                                                                                           approximation.architecture)
18            raise ValueError(message)





In the context of SuperflexPy, the main purpose of the method __init__
(lines 9-16) is to deal with the numerical solver. In this case we can accept two
architectures: pure Python or Numba. The
option selected will control the method used to calculate the fluxes. Note
that, since some methods of the approximator may require the Python implementation of the
fluxes, the Python implementation must be always provided.

The second method to implement is set_input, which converts the (ordered)
list of input fluxes to a dictionary that gives a name to these fluxes.

1    def set_input(self, input):
2
3        self.input = {'P': input[0]}





Note that the key used to identify the input flux must match the name of the
corresponding variable in the flux functions.

The third method to implement is get_output, which runs the model and
returns the output flux.

 1    def get_output(self, solve=True):
 2
 3        if solve:
 4            self._solver_states = [self._states[self._prefix_states + 'S0']]
 5            self._solve_differential_equation()
 6
 7            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
 8
 9        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
10                                          S=self.state_array,
11                                          S0=self._solver_states,
12                                          dt=self._dt,
13                                          **self.input,
14                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
15                                          )
16        return [- fluxes[0][1]]





The method receives, as input, the argument solve: if False, the
state array of the reservoir will not be recalculated and the outputs will be
computed based on the current state (e.g., computed in a previous run of the
reservoir). This option is needed for post-run inspection, when we want to check
the output of the reservoir without solving it again.

Line 4 transforms the states dictionary to an ordered list. Line 5 calls the
built-in ODE solver. Line 7 updates the state of the model to the last value
calculated. Lines 9-14 call the external numerical approximator to get the
values of the fluxes. Note that, for this operation, the Python implementation
of the fluxes method is always used because the vectorized operation executed
by the method get_fluxes of the numerical approximator does not benefit
from the Numba optimization.

The last methods to implement are _fluxes_function_python (pure Python)
and _fluxes_function_numba (Numba optimized), which calculate the
reservoir fluxes and their derivatives.

 1    @staticmethod
 2    def _fluxes_function_python(S, S0, ind, P, k, dt):
 3
 4        if ind is None:
 5            return (
 6                [
 7                    P,
 8                    - k * S,
 9                ],
10                0.0,
11                S0 + P * dt
12            )
13        else:
14            return (
15                [
16                    P[ind],
17                    - k[ind] * S,
18                ],
19                0.0,
20                S0 + P[ind] * dt[ind],
21                [
22                    0.0,
23                    - k[ind]
24                ]
25            )
26
27    @staticmethod
28    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:])',
29            nopython=True)
30    def _fluxes_function_numba(S, S0, ind, P, k, dt):
31
32        return (
33            (
34                P[ind],
35                - k[ind] * S,
36            ),
37            0.0,
38            S0 + P[ind] * dt[ind],
39            (
40                0.0,
41                - k[ind]
42            )
43        )





_fluxes_function_python and _fluxes_function_numba are both
private static methods.

Their inputs are: the state used to compute the fluxes (S), the initial
state (S0), the index to use in the arrays (ind), the input fluxes
(P), and the parameters (k). All inputs are arrays and ind is
used, when solving for a single time step, to indicate the time step to look for.

The output is a tuple containing three elements:


	tuple with the computed values of the fluxes; positive sign for incoming
fluxes (e.g. precipitation, P), negative sign  for outgoing fluxes
(e.g. streamflow, - k * S);


	lower bound for the search of the state;


	upper bound for the search of the state;


	tuple with the computed values of the derivatives of fluxes w.r.t. the state S;
we maintain the convention of positive sign for incoming
fluxes (e.g. derivative of the precipitation, 0), negative sign  for outgoing fluxes
(e.g. derivative of the streamflow, - k);




The implementation for the Numba solver differs from the pure Python implementation in two aspects:


	the usage of the Numba decorator that defines the types of input variables
(lines 28-29)


	the method works only for a single time step and not for the vectorized
solution. For the vectorized solution the Python implementation (with Numpy)
is considered sufficient, and hence a Numba implementation is not pursued.






Half-triangular lag function

[image: _images/lag.png]
The half-triangular lag function grows linearly until \(t_{\textrm{lag}}\) and then drops to
zero, as shown in the schematic. The slope \(\alpha\) is determined from the constraint that the
total area of the triangle must be equal to 1.


\[\begin{split}& f_{\textrm{lag}}=\alpha t & \quad \textrm{for }t\leq t_{\textrm{lag}}\\
& f_{\textrm{lag}}=0 & \quad \textrm{for }t>t_{\textrm{lag}}\end{split}\]

SuperflexPy provides the class LagElement that contains most of the
functionalities needed to calculate the output of a lag function. The class
implementing a customized lag function will inherit from LagElement, and
implement only the methods needed to compute the weight array.

1import numpy as np
2
3class TriangularLag(LagElement):





The only method requiring implementation is the private method used to
calculate the weight array.

 1    def _build_weight(self, lag_time):
 2
 3        weight = []
 4
 5        for t in lag_time:
 6            array_length = np.ceil(t)
 7            w_i = []
 8
 9            for i in range(int(array_length)):
10                w_i.append(self._calculate_lag_area(i + 1, t)
11                           - self._calculate_lag_area(i, t))
12
13            weight.append(np.array(w_i))
14
15        return weight





The method _build_weight makes use of a secondary private static method

 1    @staticmethod
 2    def _calculate_lag_area(bin, len):
 3
 4        if bin <= 0:
 5            value = 0
 6        elif bin < len:
 7            value = (bin / len)**2
 8        else:
 9            value = 1
10
11        return value





This method returns the area \(A_i\) of the red triangle in the figure,
which has base \(t_i\) (bin). The method _build_weight uses
this function to calculate the weight array \(W_i\), as the difference
between \(A_i\) and \(A_{i-1}\).

Note that the method _build_weight can be implemented using other
approaches, e.g., without using auxiliary methods.



Parameterized splitter

A splitter is an element that takes the flux from an upstream element and
distributes it to feed multiple downstream elements. The element is controlled
by parameters that define the portions of the flux that go into specific
elements.

The simple case that we consider here has a single input flux that is split
to two downstream elements. In this case, the splitter requires only one
parameter \(\alpha_{\textrm{split}}\). The fluxes to the downstream
elements are


\[\begin{split}& Q_1^{\textrm{out}} = \alpha_{\textrm{split}} Q^{\textrm{in}} \\
& Q_2^{\textrm{out}} = \left(1-\alpha_{\textrm{split}}\right) Q^{\textrm{in}}\end{split}\]

SuperflexPy provides the class ParameterizedElement, which can be
extended to implement all elements that are controlled by parameters but do not
have a state. The class implementing the parameterized splitter will inherit
from ParameterizedElement and implement only the methods required for
the new functionality.

1from superflexpy.framework.element import ParameterizedElement
2
3class ParameterizedSingleFluxSplitter(ParameterizedElement):





First, we define two private attributes that specify the number of upstream and
downstream elements of the splitter. This information is used by the unit when
constructing the model structure.

1    _num_downstream = 2
2    _num_upstream = 1





We then define the method that receives the inputs, and the method that calculates
the outputs.

 1    def set_input(self, input):
 2
 3        self.input = {'Q_in': input[0]}
 4
 5    def get_output(self, solve=True):
 6
 7        split_par = self._parameters[self._prefix_parameters + 'split-par']
 8
 9        return [
10            self.input['Q_in'] * split_par,
11            self.input['Q_in'] * (1 - split_par)
12        ]





The two methods have the same structure as the ones implemented as part of the earlier
Linear reservoir example. Note that, in this case, the argument
solve of the method get_output is not used, but is still required to
maintain a consistent interface.





            

          

      

      

    

  

    
      
          
            
  
Note

Last update 04/05/2021




Expand SuperflexPy: Build customized components


Adding routing to a node

Nodes in SuperflexPy have the capability to apply a lag to the fluxes simulated
by the units. Such lags can represent routing delays in the fluxes as they
propagate through the catchment (“internal” routing), or routing delays associated with the river
network (“external” routing). Both types of routing can be implemented within
a SuperflexPy node.

The default implementation of the node (Node class in
superflexpy.framework.node) does not provide the routing functionality.
The methods _internal_routing and external_routing exist but are
set to simply return the incoming fluxes without any transformation.

To support routing within a node, we need to create a customized node that implements
the methods _internal_routing and external_routing
for given lag functions. The object-oriented design of
SuperflexPy simplifies this operation, because the new node class inherits all
the methods from the original class, and has to overwrite only the two methods
that are responsible for the routing.

In this example, we illustrate an implementation of routing with a lag function
in the shape of an isosceles triangle with base t_internal and
t_external, for internal and external routing respectively. This new
implementation is similar to the implementation of the Half-triangular lag function.

The first step is to import the Node component from SuperflexPy and
define the class RoutedNode

1from superflexpy.framework.node import Node
2
3class RoutedNone(Node):





We then need to implement the methods _internal_routing and
external_routing. Both methods receive as input a list of fluxes,
and return as output the fluxes (in the same order of the inputs) with the
delay applied.

 1    def _internal_routing(self, flux):
 2
 3        t_internal = self.get_parameters(names=[self._prefix_local_parameters + 't_internal'])
 4        flux_out = []
 5
 6        for f in flux:
 7            flux_out.append(self._route(f, t_internal))
 8
 9        return flux_out
10
11    def external_routing(self, flux):
12
13        t_external = self.get_parameters(names=[self._prefix_local_parameters + 't_external'])
14        flux_out = []
15
16        for f in flux:
17            flux_out.append(self._route(f, t_external))
18
19        return flux_out





In this simple example, the two routing mechanisms are handled using the same
lag functional form. Hence, the methods _internal_routing and external_routing
take advantage of the method _route
(line 7 and 17).

The method _route is implemented as follows

 1    def _route(self, flux, time):
 2
 3        state = np.zeros(int(np.ceil(time)))
 4        weight = self._calculate_weight(time)
 5
 6        out = []
 7        for value in flux:
 8            state = state + weight * value
 9            out.append(state[0])
10            state[0] = 0
11            state = np.roll(state, shift=-1)
12
13        return np.array(out)
14
15    def _calculate_weight(self, time):
16
17        weight = []
18
19        array_length = np.ceil(time)
20
21        for i in range(int(array_length)):
22            weight.append(self._calculate_lag_area(i + 1, time)
23                          - self._calculate_lag_area(i, time))
24
25        return weight
26
27    @staticmethod
28    def _calculate_lag_area(portion, time):
29
30        half_time = time / 2
31
32        if portion <= 0:
33            value = 0
34        elif portion < half_time:
35            value = 2 * (portion / time) ** 2
36        elif portion < time:
37            value = 1 - 2 * ((time - portion) / time)**2
38        else:
39            value = 1
40
41        return value





Note that the code in this block is similar to the code implemented in
Half-triangular lag function.  The methods in this last code block are “support” methods that
make the code more organized and easier to maintain. The same numerical results
can be obtained by moving the functionality of these methods directly into
_internal_routing and external_routing, though the resulting code would be less modular.
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Application: implementation of existing conceptual models

This page describes the SuperflexPy implementation of several existing conceptual hydrological
models. The “translation” of a model into SuperflexPy requires the
following steps:


	Design of a structure that reflects the original model but satisfies the
requirements of SuperflexPy (e.g. does not contain mutual interaction
between elements, see Unit);


	Extension of the framework, coding the required elements (as explained in
the page Expand SuperflexPy: Build customized elements)


	Construction of the model structure using the elements implemented at step 2





Model M4 from Kavetski and Fenicia, WRR, 2011

M4 is a simple lumped conceptual model presented, as part of a model comparison study,
in the article


Kavetski, D., and F. Fenicia (2011), Elements of a flexible approach for
conceptual hydrological modeling: 2. Application and experimental
insights, WaterResour.Res.,47, W11511, doi:10.1029/2011WR010748.





Design of the model structure

M4 has a simple structure that can be implemented in SuperflexPy
without using connection elements. The figure shows, on the left, the structure
as presented in the original M4 publication; on the right, a schematic of the SuperflexPy
implementation is shown.

[image: _images/M4.png]
The upstream element, namely, the unsaturated reservoir (UR), is intended to represent
runoff generation processes (e.g. separation between evaporation and runoff). It
is controlled by the differential equation


\[\begin{split}& \overline{S} = \frac{S_{\textrm{UR}}}{S_{\textrm{max}}} \\
& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} = P -
E_{\textrm{P}} \left( \frac{\overline{S} \left(1+m\right)}{\overline{S} + m} \right) -
P \left(\overline{S}\right)^\beta \\\end{split}\]

The downstream element, namely, the fast reservoir (FR), is intended to represent runoff
propagation processes (e.g. routing). It is controlled by the differential
equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{FR}}}{\textrm{d}t} = P - kS_{\textrm{FR}}^\alpha \\\end{split}\]

\(S_{\textrm{UR}}\) and \(S_{\textrm{FR}}\) are the model states,
\(P\) is the precipitation input flux, \(E_{\textrm{P}}\) is the
potential evapotranspiration (a model input), and \(S_{\textrm{max}}\),
\(m\), \(\beta\), \(k\), \(\alpha\) are the model parameters.



Element creation

We now show how to use SuperflexPy to implement the elements described in the
previous section. A detailed explanation of how to use the framework to build new
elements can be found in the page Expand SuperflexPy: Build customized elements.

Note that, most of the times, when implementing a model structure with SuperflexPym
the elements have already been implemented in SuperflexPy and, therefore, the modeller does not need to
implement them. A list of the currently implemented elements is provided in the page
List of currently implemented elements.


Unsaturated reservoir

This element can be implemented by extending the class ODEsElement.

  1class UnsaturatedReservoir(ODEsElement):
  2
  3    def __init__(self, parameters, states, approximation, id):
  4
  5        ODEsElement.__init__(self,
  6                             parameters=parameters,
  7                             states=states,
  8                             approximation=approximation,
  9                             id=id)
 10
 11        self._fluxes_python = [self._fluxes_function_python]
 12
 13        if approximation.architecture == 'numba':
 14            self._fluxes = [self._fluxes_function_numba]
 15        elif approximation.architecture == 'python':
 16            self._fluxes = [self._fluxes_function_python]
 17
 18    def set_input(self, input):
 19
 20        self.input = {'P': input[0],
 21                      'PET': input[1]}
 22
 23    def get_output(self, solve=True):
 24
 25        if solve:
 26            self._solver_states = [self._states[self._prefix_states + 'S0']]
 27
 28            self._solve_differential_equation()
 29
 30            # Update the state
 31            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
 32
 33        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 34                                          S=self.state_array,
 35                                          S0=self._solver_states,
 36                                          dt=self._dt,
 37                                          **self.input,
 38                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 39                                          )
 40        return [-fluxes[0][2]]
 41
 42    def get_AET(self):
 43
 44        try:
 45            S = self.state_array
 46        except AttributeError:
 47            message = '{}get_aet method has to be run after running '.format(self._error_message)
 48            message += 'the model using the method get_output'
 49            raise AttributeError(message)
 50
 51        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 52                                          S=S,
 53                                          S0=self._solver_states,
 54                                          dt=self._dt,
 55                                          **self.input,
 56                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 57                                          )
 58        return [- fluxes[0][1]]
 59
 60    # PROTECTED METHODS
 61
 62    @staticmethod
 63    def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET, dt):
 64
 65        if ind is None:
 66            return (
 67                [
 68                    P,
 69                    - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
 70                    - P * (S / Smax)**beta,
 71                ],
 72                0.0,
 73                S0 + P * dt
 74            )
 75        else:
 76            return (
 77                [
 78                    P[ind],
 79                    - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
 80                    - P[ind] * (S / Smax[ind])**beta[ind],
 81                ],
 82                0.0,
 83                S0 + P[ind] * dt[ind],
 84                [
 85                    0.0,
 86                    - (Ce[ind] * PET[ind] * m[ind] * (m[ind] + 1) * Smax[ind])/((S + m[ind] * Smax[ind])**2),
 87                    - (P[ind] * beta[ind] / Smax[ind]) * (S / Smax[ind])**(beta[ind] - 1),
 88                ]
 89            )
 90
 91    @staticmethod
 92    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8, UniTuple(f8, 3)))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
 93            nopython=True)
 94    def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET, dt):
 95
 96        return (
 97            (
 98                P[ind],
 99                PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
100                - P[ind] * (S / Smax[ind])**beta[ind],
101            ),
102            0.0,
103            S0 + P[ind] * dt[ind],
104            (
105                0.0,
106                - (Ce[ind] * PET[ind] * m[ind] * (m[ind] + 1) * Smax[ind])/((S + m[ind] * Smax[ind])**2),
107                - (P[ind] * beta[ind] / Smax[ind]) * (S / Smax[ind])**(beta[ind] - 1),
108            )
109        )







Fast reservoir

This element can be implemented by extending the class ODEsElement.

 1class PowerReservoir(ODEsElement):
 2
 3    def __init__(self, parameters, states, approximation, id):
 4
 5        ODEsElement.__init__(self,
 6                             parameters=parameters,
 7                             states=states,
 8                             approximation=approximation,
 9                             id=id)
10
11        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture
12
13        if approximation.architecture == 'numba':
14            self._fluxes = [self._fluxes_function_numba]
15        elif approximation.architecture == 'python':
16            self._fluxes = [self._fluxes_function_python]
17
18    # METHODS FOR THE USER
19
20    def set_input(self, input):
21
22        self.input = {'P': input[0]}
23
24    def get_output(self, solve=True):
25
26        if solve:
27            self._solver_states = [self._states[self._prefix_states + 'S0']]
28            self._solve_differential_equation()
29
30            # Update the state
31            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32
33        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,  # I can use the python method since it is fast
34                                          S=self.state_array,
35                                          S0=self._solver_states,
36                                          dt=self._dt,
37                                          **self.input,
38                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
39                                          )
40
41        return [- fluxes[0][1]]
42
43    # PROTECTED METHODS
44
45    @staticmethod
46    def _fluxes_function_python(S, S0, ind, P, k, alpha, dt):
47
48        if ind is None:
49            return (
50                [
51                    P,
52                    - k * S**alpha,
53                ],
54                0.0,
55                S0 + P * dt
56            )
57        else:
58            return (
59                [
60                    P[ind],
61                    - k[ind] * S**alpha[ind],
62                ],
63                0.0,
64                S0 + P[ind] * dt[ind],
65                [
66                    0.0,
67                    - k[ind] * alpha[ind] * S**(alpha[ind] - 1)
68                ]
69            )
70
71    @staticmethod
72    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8, UniTuple(f8, 2)))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:])',
73            nopython=True)
74    def _fluxes_function_numba(S, S0, ind, P, k, alpha, dt):
75
76        return (
77            (
78                P[ind],
79                - k[ind] * S**alpha[ind],
80            ),
81            0.0,
82            S0 + P[ind] * dt[ind],
83            (
84                0.0,
85                - k[ind] * alpha[ind] * S**(alpha[ind] - 1)
86            )
87        )








Model initialization

Now that all elements are implemented, they can be combined to build the
model structure. For details refer to How to build a model with SuperflexPy.

First, we initialize all elements.

 1root_finder = PegasusPython()
 2numeric_approximator = ImplicitEulerPython(root_finder=root_finder)
 3
 4ur = UnsaturatedReservoir(
 5    parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
 6    states={'S0': 25.0},
 7    approximation=numeric_approximator,
 8    id='UR'
 9)
10
11fr = PowerReservoir(
12    parameters={'k': 0.1, 'alpha': 1.0},
13    states={'S0': 10.0},
14    approximation=numeric_approximator,
15    id='FR'
16)





Next, the elements can be put together to create a Unit that reflects
the structure presented in the figure.

1model = Unit(
2    layers=[
3        [ur],
4        [fr]
5    ],
6    id='M4'








GR4J

GR4J is a widely used conceptual hydrological model introduced in the article


Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, Journal of Hydrology,
279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.




The solution adopted here follows the “continuous state-space representation”
presented in


Santos, L., Thirel, G., and Perrin, C.: Continuous state-space
representation of a bucket-type rainfall-runoff model: a case study
with the GR4 model using state-space GR4 (version 1.0), Geosci. Model
Dev., 11, 1591-1605, 10.5194/gmd-11-1591-2018, 2018.





Design of the model structure

The figure shows, on the left, the model structure as presented in Perrin et
al., 2003; on the right, the adaptation to SuperflexPy is shown.
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The potential evaporation and the precipitation are “filtered” by an
interception element, that calculates the net fluxes by setting the smallest to zero and the
largest to the difference between the two fluxes.


\[\begin{split}& \textrm{if } P > E_{\textrm{POT}}:  \\
& \quad P_{\textrm{NET}} = P -E_{\textrm{POT}} \\
& \quad E_{\textrm{NET}}=0 \\
& \textrm{else}: \\
& \quad P_{\textrm{NET}} = 0 \\
& \quad E_{\textrm{NET}}=E_{\textrm{POT}}-P \\\end{split}\]

This element is implemented in SuperflexPy using the “interception filter”.

After the interception filter, the SuperflexPy implementation starts to differ
from the original. In the original implementation of GR4J, the precipitation is
split between a part \(P_{\textrm{s}}\) that flows into the production store
and the remaining part \(P_{\textrm{b}}\) that bypasses the reservoir.
\(P_{\textrm{s}}\) and \(P_{\textrm{b}}\) are both functions of the
state of the reservoir


\[\begin{split}& P_{\textrm{s}}=P_{\textrm{NET}}\left(1-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha}\right) \\
& P_{\textrm{b}}=P_{\textrm{NET}}\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha} \\\end{split}\]

When we implement this part of the model in SuperflexPy, these two fluxes
cannot be calculated before solving the reservoir (due to the representation of
the Unit as a succession of layers).

To solve this problem, in the SuperflexPy implementation of GR4J, all
precipitation (and not only \(P_{\textrm{s}}\)) flows into an element that
incorporates the production store. This element takes care of dividing the
precipitation internally, while solving the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} =  P_{\textrm{NET}}\left(1-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha}\right)
  - E_{\textrm{NET}}\left(2\frac{S_{\textrm{UR}}}{x_1}-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^\alpha\right)-
  \frac{x_1^{1-\beta}}{(\beta-1)} \nu^{\beta-1}S_{\textrm{UR}}^\beta \\\end{split}\]

where the first term is the precipitation \(P_s\), the second term is the
actual evaporation, and the third term represents the output of the reservoir,
which here corresponds to “percolation”.

Once the reservoir is solved (i.e. the values of \(S_{\textrm{UR}}\) that
solve the discretized differential equation over a time step are found), the element outputs the
sum of percolation and bypassing precipitation (\(P_b\)).

The flux is then divided between two lag functions, referred to as “unit
hydrographs” and abbreviated UH: 90% of the flux goes to UH1 and 10% goes to
UH2. In this part of the model structure the correspondence between the elements
of GR4J and their SuperflexPy implementation is quite clear.

The output of UH1 provides the input of the routing store, which is a reservoir
controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{RR}}}{\textrm{d}t}=Q_{\textrm{UH1}} -
\frac{x_3^{1-\gamma}}{(\gamma-1)}S_{\textrm{RR}}^\gamma-
\frac{x_2}{x_3^\omega}S_{\textrm{RR}}^\omega\\\end{split}\]

where the second term is the output of the reservoir and the last is a
gain/loss term (called \(Q_{\textrm{RF}}\)).

The gain/loss term \(Q_{\textrm{RF}}\), which is a function of the state
\(S_{\textrm{RR}}\) of the reservoir, is also subtracted from the output of
UH2. In SuperflexPy, this operation cannot be done in the same unit layer as the
solution of the routing store, and instead it is done afterwards. For this
reason, the SuperflexPy implementation of GR4J has an additional element (called
“flux aggregator”) that uses a junction element to combine the output of the
routing store, the gain/loss term, and the output of UH2. The flux aggregator
then computes the outflow of the model using the equation


\[\begin{split}& Q = Q_{\textrm{RR}} + \max(0;Q_{\textrm{UH2}} - Q_{\textrm{RF}}) \\\end{split}\]



Elements creation

We now show how to use SuperflexPy to implement the elements described in the
previous section. A detailed explanation of how to use the framework to build new
elements can be found in the page Expand SuperflexPy: Build customized elements.

Note that, most of the times, when implementing a model structure with SuperflexPym
the elements have already been implemented in SuperflexPy and, therefore, the modeller does not need to
implement them. A list of the currently implemented elements is provided in the page
List of currently implemented elements.


Interception

The interception filter can be implemented by extending the class
BaseElement

 1class InterceptionFilter(BaseElement):
 2
 3    _num_upstream = 1
 4    _num_downstream = 1
 5
 6    def set_input(self, input):
 7
 8        self.input = {}
 9        self.input['PET'] = input[0]
10        self.input['P'] = input[1]
11
12    def get_output(self, solve=True):
13
14        remove = np.minimum(self.input['PET'], self.input['P'])
15
16        return [self.input['PET'] - remove, self.input['P'] - remove]







Production store

The production store is controlled by a differential equation and, therefore,
can be constructed by extending the class ODEsElement

  1class ProductionStore(ODEsElement):
  2
  3    def __init__(self, parameters, states, approximation, id):
  4
  5        ODEsElement.__init__(self,
  6                             parameters=parameters,
  7                             states=states,
  8                             approximation=approximation,
  9                             id=id)
 10
 11        self._fluxes_python = [self._flux_function_python]
 12
 13        if approximation.architecture == 'numba':
 14            self._fluxes = [self._flux_function_numba]
 15        elif approximation.architecture == 'python':
 16            self._fluxes = [self._flux_function_python]
 17
 18    def set_input(self, input):
 19
 20        self.input = {}
 21        self.input['PET'] = input[0]
 22        self.input['P'] = input[1]
 23
 24    def get_output(self, solve=True):
 25
 26        if solve:
 27            # Solve the differential equation
 28            self._solver_states = [self._states[self._prefix_states + 'S0']]
 29            self._solve_differential_equation()
 30
 31            # Update the states
 32            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
 33
 34        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 35                                          S=self.state_array,
 36                                          S0=self._solver_states,
 37                                          dt=self._dt,
 38                                          **self.input,
 39                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 40                                          )
 41
 42        Pn_minus_Ps = self.input['P'] - fluxes[0][0]
 43        Perc = - fluxes[0][2]
 44        return [Pn_minus_Ps + Perc]
 45
 46    def get_aet(self):
 47
 48        try:
 49            S = self.state_array
 50        except AttributeError:
 51            message = '{}get_aet method has to be run after running '.format(self._error_message)
 52            message += 'the model using the method get_output'
 53            raise AttributeError(message)
 54
 55        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 56                                          S=S,
 57                                          S0=self._solver_states,
 58                                          dt=self._dt,
 59                                          **self.input,
 60                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 61                                          )
 62
 63        return [- fluxes[0][1]]
 64
 65    @staticmethod
 66    def _flux_function_python(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):
 67
 68        if ind is None:
 69            return(
 70                [
 71                    P * (1 - (S / x1)**alpha),  # Ps
 72                    - PET * (2 * (S / x1) - (S / x1)**alpha),  # Evaporation
 73                    - ((x1**(1 - beta)) / ((beta - 1))) * (ni**(beta - 1)) * (S**beta)  # Perc
 74                ],
 75                0.0,
 76                S0 + P * (1 - (S / x1)**alpha) * dt
 77            )
 78        else:
 79            return(
 80                [
 81                    P[ind] * (1 - (S / x1[ind])**alpha[ind]),  # Ps
 82                    - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]),  # Evaporation
 83                    - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1))) * (ni[ind]**(beta[ind] - 1)) * (S**beta[ind])  # Perc
 84                ],
 85                0.0,
 86                S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind]) * dt[ind],
 87                [
 88                    - (P[ind] * alpha[ind] / x1[ind]) * ((S / x1[ind])**(alpha[ind] - 1)),
 89                    - (PET[ind] / x1[ind]) * (2 - alpha[ind] * ((S / x1[ind])**(alpha[ind] - 1))),
 90                    - beta[ind] * ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1) * dt[ind])) * (ni[ind]**(beta[ind] - 1)) * (S**(beta[ind] - 1))
 91                ]
 92            )
 93
 94    @staticmethod
 95    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8, UniTuple(f8, 3)))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
 96            nopython=True)
 97    def _flux_function_numba(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):
 98
 99        return(
100            (
101                P[ind] * (1 - (S / x1[ind])**alpha[ind]),  # Ps
102                - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]),  # Evaporation
103                - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1))) * (ni[ind]**(beta[ind] - 1)) * (S**beta[ind])  # Perc
104            ),
105            0.0,
106            S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind]) * dt[ind],
107            (
108                - (P[ind] * alpha[ind] / x1[ind]) * ((S / x1[ind])**(alpha[ind] - 1)),
109                - (PET[ind] / x1[ind]) * (2 - alpha[ind] * ((S / x1[ind])**(alpha[ind] - 1))),
110                - beta[ind] * ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1) * dt[ind])) * (ni[ind]**(beta[ind] - 1)) * (S**(beta[ind] - 1))
111            )
112        )







Unit hydrographs

The unit hydrographs are an extension of the LagElement, and can be
implemented as follows

 1class UnitHydrograph1(LagElement):
 2
 3    def __init__(self, parameters, states, id):
 4
 5        LagElement.__init__(self, parameters, states, id)
 6
 7    def _build_weight(self, lag_time):
 8
 9        weight = []
10
11        for t in lag_time:
12            array_length = np.ceil(t)
13            w_i = []
14            for i in range(int(array_length)):
15                w_i.append(self._calculate_lag_area(i + 1, t)
16                           - self._calculate_lag_area(i, t))
17            weight.append(np.array(w_i))
18
19        return weight
20
21    @staticmethod
22    def _calculate_lag_area(bin, len):
23        if bin <= 0:
24            value = 0
25        elif bin < len:
26            value = (bin / len)**2.5
27        else:
28            value = 1
29        return value





 1class UnitHydrograph2(LagElement):
 2
 3    def __init__(self, parameters, states, id):
 4
 5        LagElement.__init__(self, parameters, states, id)
 6
 7    def _build_weight(self, lag_time):
 8
 9        weight = []
10
11        for t in lag_time:
12            array_length = np.ceil(t)
13            w_i = []
14            for i in range(int(array_length)):
15                w_i.append(self._calculate_lag_area(i + 1, t)
16                           - self._calculate_lag_area(i, t))
17            weight.append(np.array(w_i))
18
19        return weight
20
21    @staticmethod
22    def _calculate_lag_area(bin, len):
23        half_len = len / 2
24        if bin <= 0:
25            value = 0
26        elif bin < half_len:
27            value = 0.5 * (bin / half_len)**2.5
28        elif bin < len:
29            value = 1 - 0.5 * (2 - bin / half_len)**2.5
30        else:
31            value = 1
32        return value







Routing store

The routing store is an ODEsElement

 1class RoutingStore(ODEsElement):
 2
 3    def __init__(self, parameters, states, approximation, id):
 4
 5        ODEsElement.__init__(self,
 6                             parameters=parameters,
 7                             states=states,
 8                             approximation=approximation,
 9                             id=id)
10
11        self._fluxes_python = [self._flux_function_python]
12
13        if approximation.architecture == 'numba':
14            self._fluxes = [self._flux_function_numba]
15        elif approximation.architecture == 'python':
16            self._fluxes = [self._flux_function_python]
17
18    def set_input(self, input):
19
20        self.input = {}
21        self.input['P'] = input[0]
22
23    def get_output(self, solve=True):
24
25        if solve:
26            # Solve the differential equation
27            self._solver_states = [self._states[self._prefix_states + 'S0']]
28            self._solve_differential_equation()
29
30            # Update the states
31            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32
33        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
34                                          S=self.state_array,
35                                          S0=self._solver_states,
36                                          dt=self._dt,
37                                          **self.input,
38                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
39                                          )
40
41        Qr = - fluxes[0][1]
42        F = -fluxes[0][2]
43
44        return [Qr, F]
45
46    @staticmethod
47    def _flux_function_python(S, S0, ind, P, x2, x3, gamma, omega, dt):
48
49        if ind is None:
50            return(
51                [
52                    P,  # P
53                    - ((x3**(1 - gamma)) / ((gamma - 1))) * (S**gamma),  # Qr
54                    - (x2 * (S / x3)**omega),  # F
55                ],
56                0.0,
57                S0 + P * dt
58            )
59        else:
60            return(
61                [
62                    P[ind],  # P
63                    - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1))) * (S**gamma[ind]),  # Qr
64                    - (x2[ind] * (S / x3[ind])**omega[ind]),  # F
65                ],
66                0.0,
67                S0 + P[ind] * dt[ind],
68                [
69                    0.0,
70                    - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1) * dt[ind])) * (S**(gamma[ind] - 1)) * gamma[ind],
71                    - (omega[ind] * x2[ind] * ((S / x3[ind])**(omega[ind] - 1)))
72                ]
73            )
74
75    @staticmethod
76    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8, UniTuple(f8, 3)))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
77            nopython=True)
78    def _flux_function_numba(S, S0, ind, P, x2, x3, gamma, omega, dt):
79
80        return(
81            (
82                P[ind],  # P
83                - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1))) * (S**gamma[ind]),  # Qr
84                - (x2[ind] * (S / x3[ind])**omega[ind]),  # F
85            ),
86            0.0,
87            S0 + P[ind] * dt[ind],
88            (
89                0.0,
90                - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1) * dt[ind])) * (S**(gamma[ind] - 1)) * gamma[ind],
91                - (omega[ind] * x2[ind] * ((S / x3[ind])**(omega[ind] - 1)))
92            )
93        )







Flux aggregator

The flux aggregator can be implemented by extending a BaseElement

 1class FluxAggregator(BaseElement):
 2
 3    _num_downstream = 1
 4    _num_upstream = 1
 5
 6    def set_input(self, input):
 7
 8        self.input = {}
 9        self.input['Qr'] = input[0]
10        self.input['F'] = input[1]
11        self.input['Q2_out'] = input[2]
12
13    def get_output(self, solve=True):
14
15        return [self.input['Qr']
16                + np.maximum(0, self.input['Q2_out'] - self.input['F'])]








Model initialization

Now that all elements are implemented, we can combine them to build the model
structure. For details refer to How to build a model with SuperflexPy.

First, we initialize all elements.

 1x1, x2, x3, x4 = (50.0, 0.1, 20.0, 3.5)
 2
 3root_finder = PegasusPython()  # Use the default parameters
 4numerical_approximation = ImplicitEulerPython(root_finder)
 5
 6interception_filter = InterceptionFilter(id='ir')
 7
 8production_store = ProductionStore(parameters={'x1': x1, 'alpha': 2.0,
 9                                               'beta': 5.0, 'ni': 4/9},
10                                   states={'S0': 10.0},
11                                   approximation=numerical_approximation,
12                                   id='ps')
13
14splitter = Splitter(weight=[[0.9], [0.1]],
15                    direction=[[0], [0]],
16                    id='spl')
17
18unit_hydrograph_1 = UnitHydrograph1(parameters={'lag-time': x4},
19                                    states={'lag': None},
20                                    id='uh1')
21
22unit_hydrograph_2 = UnitHydrograph2(parameters={'lag-time': 2*x4},
23                                    states={'lag': None},
24                                    id='uh2')
25
26routing_store = RoutingStore(parameters={'x2': x2, 'x3': x3,
27                                         'gamma': 5.0, 'omega': 3.5},
28                             states={'S0': 10.0},
29                             approximation=numerical_approximation,
30                             id='rs')
31
32transparent = Transparent(id='tr')
33
34junction = Junction(direction=[[0, None],  # First output
35                               [1, None],  # Second output
36                               [None, 0]], # Third output
37                    id='jun')
38
39flux_aggregator = FluxAggregator(id='fa')





The elements are then put together to define a Unit that reflects the
GR4J structure presented in the figure.

1model = Unit(layers=[[interception_filter],
2                     [production_store],
3                     [splitter],
4                     [unit_hydrograph_1, unit_hydrograph_2],
5                     [routing_store, transparent],
6                     [junction],
7                     [flux_aggregator]],
8             id='model')








HYMOD

HYMOD is another widely used conceptual hydrological model. It was first
published in


Boyle, D. P. (2001). Multicriteria calibration of hydrologic models,
The University of Arizona. Link [http://hdl.handle.net/10150/290657]




The solution proposed here follows the model structure presented in


Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.,
and Sorooshian, S.: A framework for development and application of
hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26,
https://doi.org/10.5194/hess-5-13-2001, 2001.





Design of the structure

[image: _images/hymod.png]
HYMOD comprises three groups of reservoirs intended to represent, respectively,
the upper zone (soil dynamics), channel routing (surface runoff), and lower zone
(subsurface flow).

As can be seen in the figure, the original structure of HYMOD already meets the
design constrains of SuperflexPy (it does not contains feedbacks between
elements). Therefore the SuperflexPy implementation of HYMOD is more
straightforward than for GR4J.

The upper zone is a reservoir intended to represent streamflow
generation processes and evaporation. It is controlled by the differential
equation


\[\begin{split}& \overline{S} = \frac{S_{\textrm{UR}}}{S_{\textrm{max}}} \\
& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} = P - E -
P \left(1 - \left(1-\overline{S}\right)^\beta\right) \\\end{split}\]

where the first term is the precipitation input, the second term is the
actual evaporation (which is equal to the potential evaporation as long as
there is sufficient storage in the reservoir), and the third term is the outflow
from the reservoir.

The outflow from the reservoir is then split between the channel routing (3
reservoirs) and the lower zone (1 reservoir). All these elements are represented
by linear reservoirs controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}t} = P - kS \\\end{split}\]

where the first term is the input (here, the outflow from the upstream element)
and the second term represents the outflow from the reservoir.

Channel routing and lower zone differ from each other in the number of
reservoirs used (3 in the first case and 1 in the second), and in the value of
the parameter \(k\), which controls the outflow rate. Based on intended
model operation, \(k\) should have a larger value for channel routing
because this element is intended to represent faster processes.

The outputs of these two flowpaths are collected by a junction, which generates
the final model output.

Comparing the two panels in the figure, the only difference is the presence of
the two transparent elements that are needed to fill the “gaps” in the
SuperflexPy structure (see Unit).



Elements creation

We now show how to use SuperflexPy to implement the elements described in the
previous section. A detailed explanation of how to use the framework to build new
elements can be found in the page Expand SuperflexPy: Build customized elements.

Note that, most of the times, when implementing a model structure with SuperflexPym
the elements have already been implemented in SuperflexPy and, therefore, the modeller does not need to
implement them. A list of the currently implemented elements is provided in the page
List of currently implemented elements.


Upper zone

The code used to simulate the upper zone present a change in the equation used
to calculate the actual evaporation. In the original version (Wagener et al.,
1)    the equation is “described” in the text


The actual evapotranspiration is equal to the potential value if
sufficient soil moisture is available; otherwise it is equal to the
available soil moisture content.




which translates to the equation


\[\begin{split}& \textrm{if } S > 0:  \\
& \quad E = E_{\textrm{POT}} \\
& \textrm{else}: \\
& \quad E=0 \\\end{split}\]

Note that this solution is not smooth and the resulting sharp threshold can
cause problematic discontinuities in the model behavior. A smooth version of this equation is given by


\[\begin{split}& \overline{S} = \frac{S_{\textrm{UR}}}{S_{\textrm{max}}} \\
& E=E_{\textrm{POT}}\left( \frac{\overline{S}(1+m)}{\overline{S}+m} \right)\\\end{split}\]

The upper zone reservoir can be implemented by extending the class
ODEsElement.

  1class UpperZone(ODEsElement):
  2
  3    def __init__(self, parameters, states, approximation, id):
  4
  5        ODEsElement.__init__(self,
  6                             parameters=parameters,
  7                             states=states,
  8                             approximation=approximation,
  9                             id=id)
 10
 11        self._fluxes_python = [self._fluxes_function_python]
 12
 13        if approximation.architecture == 'numba':
 14            self._fluxes = [self._fluxes_function_numba]
 15        elif approximation.architecture == 'python':
 16            self._fluxes = [self._fluxes_function_python]
 17
 18    def set_input(self, input):
 19
 20        self.input = {'P': input[0],
 21                      'PET': input[1]}
 22
 23    def get_output(self, solve=True):
 24
 25        if solve:
 26            self._solver_states = [self._states[self._prefix_states + 'S0']]
 27
 28            self._solve_differential_equation()
 29
 30            # Update the state
 31            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
 32
 33        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 34                                          S=self.state_array,
 35                                          S0=self._solver_states,
 36                                          dt=self._dt,
 37                                          **self.input,
 38                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 39                                          )
 40        return [-fluxes[0][2]]
 41
 42    def get_AET(self):
 43
 44        try:
 45            S = self.state_array
 46        except AttributeError:
 47            message = '{}get_aet method has to be run after running '.format(self._error_message)
 48            message += 'the model using the method get_output'
 49            raise AttributeError(message)
 50
 51        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
 52                                          S=S,
 53                                          S0=self._solver_states,
 54                                          dt=self._dt,
 55                                          **self.input,
 56                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
 57                                          )
 58        return [- fluxes[0][1]]
 59
 60    # PROTECTED METHODS
 61
 62    @staticmethod
 63    def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET, dt):
 64
 65        if ind is None:
 66            return (
 67                [
 68                    P,
 69                    - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
 70                    - P * (1 - (1 - (S / Smax))**beta),
 71                ],
 72                0.0,
 73                S0 + P * dt
 74            )
 75        else:
 76            return (
 77                [
 78                    P[ind],
 79                    - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
 80                    - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
 81                ],
 82                0.0,
 83                S0 + P[ind] * dt[ind],
 84                [
 85                    0.0,
 86                    - PET[ind] * m[ind] * Smax[ind] * (1 + m[ind]) / ((S + Smax[ind] * m[ind])**2),
 87                    - P[ind] * beta[ind] * ((1 - (S / Smax[ind]))**(beta[ind] - 1)) / Smax[ind],
 88                ]
 89            )
 90
 91    @staticmethod
 92    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8, UniTuple(f8, 3)))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
 93            nopython=True)
 94    def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET, dt):
 95
 96        return (
 97            (
 98                P[ind],
 99                - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
100                - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
101            ),
102            0.0,
103            S0 + P[ind] * dt[ind],
104            (
105                0.0,
106                - PET[ind] * m[ind] * Smax[ind] * (1 + m[ind]) / ((S + Smax[ind] * m[ind])**2),
107                - P[ind] * beta[ind] * ((1 - (S / Smax[ind]))**(beta[ind] - 1)) / Smax[ind],
108            )
109        )







Channel routing and lower zone

The elements representing channel routing and lower zone are all linear
reservoirs that can be implemented by extending the class ODEsElement.

 1class LinearReservoir(ODEsElement):
 2
 3    def __init__(self, parameters, states, approximation, id):
 4
 5        ODEsElement.__init__(self,
 6                             parameters=parameters,
 7                             states=states,
 8                             approximation=approximation,
 9                             id=id)
10
11        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture
12
13        if approximation.architecture == 'numba':
14            self._fluxes = [self._fluxes_function_numba]
15        elif approximation.architecture == 'python':
16            self._fluxes = [self._fluxes_function_python]
17
18    # METHODS FOR THE USER
19
20    def set_input(self, input):
21
22        self.input = {'P': input[0]}
23
24    def get_output(self, solve=True):
25
26        if solve:
27            self._solver_states = [self._states[self._prefix_states + 'S0']]
28            self._solve_differential_equation()
29
30            # Update the state
31            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32
33        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,  # I can use the python method since it is fast
34                                          S=self.state_array,
35                                          S0=self._solver_states,
36                                          dt=self._dt,
37                                          **self.input,
38                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
39                                          )
40        return [- fluxes[0][1]]
41
42    # PROTECTED METHODS
43
44    @staticmethod
45    def _fluxes_function_python(S, S0, ind, P, k, dt):
46
47        if ind is None:
48            return (
49                [
50                    P,
51                    - k * S,
52                ],
53                0.0,
54                S0 + P * dt
55            )
56        else:
57            return (
58                [
59                    P[ind],
60                    - k[ind] * S,
61                ],
62                0.0,
63                S0 + P[ind] * dt[ind],
64                [
65                    0.0,
66                    - k[ind]
67                ]
68            )
69
70    @staticmethod
71    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8, UniTuple(f8, 2)))(optional(f8), f8, i4, f8[:], f8[:], f8[:])',
72            nopython=True)
73    def _fluxes_function_numba(S, S0, ind, P, k, dt):
74
75        return (
76            (
77                P[ind],
78                - k[ind] * S,
79            ),
80            0.0,
81            S0 + P[ind] * dt[ind],
82            (
83                0.0,
84                - k[ind]
85            )
86        )








Model initialization

Now that all elements are implemented, we can combine them to build the HYMOD
model
structure. For details refer to How to build a model with SuperflexPy.

First, we initialize all elements.

 1root_finder = PegasusPython()  # Use the default parameters
 2numerical_approximation = ImplicitEulerPython(root_finder)
 3
 4upper_zone = UpperZone(parameters={'Smax': 50.0, 'm': 0.01, 'beta': 2.0},
 5                       states={'S0': 10.0},
 6                       approximation=numerical_approximation,
 7                       id='uz')
 8
 9splitter = Splitter(weight=[[0.6], [0.4]],
10                    direction=[[0], [0]],
11                    id='spl')
12
13channel_routing_1 = LinearReservoir(parameters={'k': 0.1},
14                                    states={'S0': 10.0},
15                                    approximation=numerical_approximation,
16                                    id='cr1')
17
18channel_routing_2 = LinearReservoir(parameters={'k': 0.1},
19                                    states={'S0': 10.0},
20                                    approximation=numerical_approximation,
21                                    id='cr2')
22
23channel_routing_3 = LinearReservoir(parameters={'k': 0.1},
24                                    states={'S0': 10.0},
25                                    approximation=numerical_approximation,
26                                    id='cr3')
27
28lower_zone = LinearReservoir(parameters={'k': 0.1},
29                             states={'S0': 10.0},
30                             approximation=numerical_approximation,
31                             id='lz')
32
33transparent_1 = Transparent(id='tr1')
34
35transparent_2 = Transparent(id='tr2')
36
37junction = Junction(direction=[[0, 0]],  # First output
38                    id='jun')





The elements are now combined to define a Unit that reflects the
structure shown in the figure.

1model = Unit(layers=[[upper_zone],
2                     [splitter],
3                     [channel_routing_1, lower_zone],
4                     [channel_routing_2, transparent_1],
5                     [channel_routing_3, transparent_2],
6                     [junction]],
7             id='model')
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Case studies

This page describes the model configurations used in research publications based
on Superflex and SuperflexPy.


Dal Molin et al., 2020, HESS

This section describes the implementation of the semi-distributed hydrological
model M02 presented in the article:


Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Understanding
dominant controls on streamflow spatial variability to set up a
semi-distributed hydrological model: the case study of the Thur
catchment, Hydrol. Earth Syst. Sci., 24, 1319–1345,
https://doi.org/10.5194/hess-24-1319-2020, 2020.




In this application, the Thur catchment is discretized into 10 subcatchments and 2
hydrological response units (HRUs). Please refer to the article for the details;
here we only show the SuperflexPy code needed to reproduce the model from the
publication.


Model structure

The two HRUs are represented using the same model structure, shown in the
figure below.

[image: _images/model_structure_thur.png]
This model structure is similar to HYMOD; its implementation using
SuperflexPy is presented next.

[image: _images/ThurHESS2020.png]
This model structure includes a snow model, and hence requires time series of
temperature as an input in addition to precipitation and PET.
Inputs are assigned to the element in the first layer of the unit and the
model structure then propagates these inputs through all the elements until they
reach the element (snow reservoir) where they are actually needed. Consequently, all the elements
upstream of the snow reservoir have to be able to handle (i.e. to input and output) that input.

In this model, the choice of temperature as input is convenient because
temperature is required by the element appearing first in the model structure.

In other cases, an alternative solution would have been to design the snow
reservoir such that the temperature is one of its state variables. This solution
would be preferable if the snow reservoir is not the first element of the
structure, given that temperature is not an input commonly used by other
elements.

The discretization of the Thur catchment into units (HRUs) and nodes
(subcatchments) is represented in the figure below.

[image: _images/ThurSchemeNodes.png]


Initializing the elements

All elements required for this model structure are already available in
SuperflexPy. Therefore they just need to be imported.

1from superflexpy.implementation.elements.thur_model_hess import SnowReservoir, UnsaturatedReservoir, HalfTriangularLag, PowerReservoir
2from superflexpy.implementation.elements.structure_elements import Transparent, Junction, Splitter
3from superflexpy.implementation.root_finders.pegasus import PegasusPython
4from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython





Elements are then initialized, defining the initial state and parameter values.

 1solver = PegasusPython()
 2approximator = ImplicitEulerPython(root_finder=solver)
 3
 4upper_splitter = Splitter(
 5    direction=[
 6        [0, 1, None],    # P and T go to the snow reservoir
 7        [2, None, None]  # PET goes to the transparent element
 8    ],
 9    weight=[
10        [1.0, 1.0, 0.0],
11        [0.0, 0.0, 1.0]
12    ],
13    id='upper-splitter'
14)
15
16snow = SnowReservoir(
17    parameters={'t0': 0.0, 'k': 0.01, 'm': 2.0},
18    states={'S0': 0.0},
19    approximation=approximator,
20    id='snow'
21)
22
23upper_transparent = Transparent(
24    id='upper-transparent'
25)
26
27upper_junction = Junction(
28    direction=[
29        [0, None],
30        [None, 0]
31    ],
32    id='upper-junction'
33)
34
35unsaturated = UnsaturatedReservoir(
36    parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
37    states={'S0': 10.0},
38    approximation=approximator,
39    id='unsaturated'
40)
41
42lower_splitter = Splitter(
43    direction=[
44        [0],
45        [0]
46    ],
47    weight=[
48        [0.3],   # Portion to slow reservoir
49        [0.7]    # Portion to fast reservoir
50    ],
51    id='lower-splitter'
52)
53
54lag_fun = HalfTriangularLag(
55    parameters={'lag-time': 2.0},
56    states={'lag': None},
57    id='lag-fun'
58)
59
60fast = PowerReservoir(
61    parameters={'k': 0.01, 'alpha': 3.0},
62    states={'S0': 0.0},
63    approximation=approximator,
64    id='fast'
65)
66
67slow = PowerReservoir(
68    parameters={'k': 1e-4, 'alpha': 1.0},
69    states={'S0': 0.0},
70    approximation=approximator,
71    id='slow'
72)
73
74lower_transparent = Transparent(
75    id='lower-transparent'
76)
77
78lower_junction = Junction(
79    direction=[
80        [0, 0]
81    ],
82    id='lower-junction'
83)







Initializing the HRUs structure

We now define the two units that represent the HRUs.

 1consolidated = Unit(
 2    layers=[
 3        [upper_splitter],
 4        [snow, upper_transparent],
 5        [upper_junction],
 6        [unsaturated],
 7        [lower_splitter],
 8        [slow, lag_fun],
 9        [lower_transparent, fast],
10        [lower_junction],
11    ],
12    id='consolidated'
13)
14
15unconsolidated = Unit(
16    layers=[
17        [upper_splitter],
18        [snow, upper_transparent],
19        [upper_junction],
20        [unsaturated],
21        [lower_splitter],
22        [slow, lag_fun],
23        [lower_transparent, fast],
24        [lower_junction],
25    ],
26    id='unconsolidated'
27)







Initializing the catchments

We now assign the units (HRUs) to the nodes (catchments).

 1andelfingen = Node(
 2    units=[consolidated, unconsolidated],
 3    weights=[0.24, 0.76],
 4    area=403.3,
 5    id='andelfingen'
 6)
 7
 8appenzell = Node(
 9    units=[consolidated, unconsolidated],
10    weights=[0.92, 0.08],
11    area=74.4,
12    id='appenzell'
13)
14
15frauenfeld = Node(
16    units=[consolidated, unconsolidated],
17    weights=[0.49, 0.51],
18    area=134.4,
19    id='frauenfeld'
20)
21
22halden = Node(
23    units=[consolidated, unconsolidated],
24    weights=[0.34, 0.66],
25    area=314.3,
26    id='halden'
27)
28
29herisau = Node(
30    units=[consolidated, unconsolidated],
31    weights=[0.88, 0.12],
32    area=16.7,
33    id='herisau'
34)
35
36jonschwil = Node(
37    units=[consolidated, unconsolidated],
38    weights=[0.9, 0.1],
39    area=401.6,
40    id='jonschwil'
41)
42
43mogelsberg = Node(
44    units=[consolidated, unconsolidated],
45    weights=[0.92, 0.08],
46    area=88.1,
47    id='mogelsberg'
48)
49
50mosnang = Node(
51    units=[consolidated],
52    weights=[1.0],
53    area=3.1,
54    id='mosnang'
55)
56
57stgallen = Node(
58    units=[consolidated, unconsolidated],
59    weights=[0.87, 0.13],
60    area=186.6,
61    id='stgallen'
62)
63
64waengi = Node(
65    units=[consolidated, unconsolidated],
66    weights=[0.63, 0.37],
67    area=78.9,
68    id='waengi'
69)





Note that all nodes incorporate the information about their area, which
is used by the network to calculate their contribution to the total outflow.

There is no requirement for a node to contain all units.  For example, the unit
unconsolidated is not present in the Mosnang subcatchment. Hence, as
shown in line 50, the node mosnang is defined to contain only the unit
consolidated.



Initializing the network

The last step consists in creating the network that connects all the nodes
previously initialized.

 1thur_catchment = Network(
 2    nodes=[
 3        andelfingen,
 4        appenzell,
 5        frauenfeld,
 6        halden,
 7        herisau,
 8        jonschwil,
 9        mogelsberg,
10        mosnang,
11        stgallen,
12        waengi,
13    ],
14    topology={
15        'andelfingen': None,
16        'appenzell': 'stgallen',
17        'frauenfeld': 'andelfingen',
18        'halden': 'andelfingen',
19        'herisau': 'halden',
20        'jonschwil': 'halden',
21        'mogelsberg': 'jonschwil',
22        'mosnang': 'jonschwil',
23        'stgallen': 'halden',
24        'waengi': 'frauenfeld',
25    }
26)







Running the model

Before the model can be run, we need to set the input fluxes and the time step size.

The input fluxes are assigned to the individual nodes (catchments).
Here, the data is available as a Pandas DataFrame, with columns names P_name_of_the_catchment,
T_name_of_the_catchment, and PET_name_of_the_catchment.

The inputs can be set using a for loop

1for cat, cat_name in zip(catchments, catchments_names):
2    cat.set_input([
3        df['P_{}'.format(cat_name)].values,
4        df['T_{}'.format(cat_name)].values,
5        df['PET_{}'.format(cat_name)].values,
6    ])





The model time step size is set next. This can be done directly at the
network level, which automatically sets the time step size to all lower-level
model components.

1thur_catchment.set_timestep(1.0)





We can now run the model and access its output (see Semi-distributed model with multiple nodes for details).

1output = thur_catchment.get_output()
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SuperflexPy in the scientific literature

This page lists the scientific publications presenting SuperflexPy or using it
in specific applications.


Tip

If you use SuperflexPy for your publication, please open an issue [https://github.com/dalmo1991/superflexPy/issues] in the GitHub
repository so we will add it to this page.




Previous publications on FLEX and Superflex


	Fenicia, F., Savenije, H. H. G.,Matgen, P., and Pfister, L.: Understanding catchment behavior through stepwise model concept improvement, Water Resources Research, 44, W01402, https://doi.org/10.1029/2006WR005563, 2008.


	Fenicia, F., Kavetski D., and Savenije H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11), W11510, https://doi.org/10.1029/2010wr010174, 2011


	Kavetski, D., and Fenicia F.: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights, Water Resources Research, 47(11), W11511, https://doi.org/10.1029/2011wr010748, 2011






Publications on SuperflexPy


	Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0: an open
source framework for building, testing and improving conceptual
hydrological models, Geosci. Model Dev., https://doi.org/10.5194/gmd-14-7047-2021, 2021.






Publications using SuperflexPy


	Jansen, K. F., Teuling, A.J., Craig, J. R., Dal Molin, M., Knoben, W. J. M.,
Parajka, J., Vis, M., and Melsen, L. A.: Mimicry of a conceptual
hydrological model (HBV): what’s in a name?, Water Resources Research, 57,
e2020WR029143. https://doi.org/10.1029/2020WR029143, 2020.
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Sharing model configurations

A key goal of SuperflexPy is to facilitate collaboration between research
groups, and to help compare and improve modelling solutions. To this end, users
can share model configurations that can be imported and run by other users. Note
that models built with SuperflexPy are Python objects that, once initialized,
can be imported into other scripts.

A user who wishes to share their model configuration with the community can
create a Python script (with a descriptive name) that initializes the model
(without running it) and “upload” it to the GitHub repository in the folder
superflexpy/implementation/models/. This “upload” requires the following steps: (1)
fork the SuperflexPy [https://github.com/dalmo1991/superflexPy]
repository, (2) add the script to the local fork of the repository, and (3)
make a pull request to the original repository (see Software organization and contribution for
further details). The contributed code will be checked by the repository maintainers. Assuming all checks
are passed the newly incorporated code will be incorporated in the following release of SuperflexPy
and thus made available to other SuperflexPy users.

The user will maintain authorship on the contributed code, which will be
released with the same License as SuperflexPy. It is good practice to
include unit tests to enable users to ensure the new code is operating as expected (see Automated testing).


Practical example with M4

We illustrate of how to distribute SuperflexPy models to colleagues using as an
example the model Model M4 from Kavetski and Fenicia, WRR, 2011.

First, we create the file m4_sf_2011.py that contains the code to
initialize the model

 1from superflexpy.implementation.root_finders.pegasus import PegasusPython
 2from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
 3from superflexpy.implementation.elements.hbv import UnsaturatedReservoir, PowerReservoir
 4from superflexpy.framework.unit import Unit
 5
 6root_finder = PegasusPython()
 7numeric_approximator = ImplicitEulerPython(root_finder=root_finder)
 8
 9ur = UnsaturatedReservoir(
10    parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
11    states={'S0': 25.0},
12    approximation=numeric_approximator,
13    id='UR'
14)
15
16fr = PowerReservoir(
17    parameters={'k': 0.1, 'alpha': 1.0},
18    states={'S0': 10.0},
19    approximation=numeric_approximator,
20    id='FR'
21)
22
23model = Unit(
24    layers=[
25        [ur],
26        [fr]
27    ],
28    id='M4'
29)





Then we incorporate the file m4_sf_2011.py into the SuperflexPy repository in the folder
superflexpy/implementation/models/ following the steps illustrated
in the previous section (fork, change, and pull request).

Once the next release of SuperflexPy is available, the M4 model implementation
will be available in the updated installed package.
General users can then use this new model in their own application, by importing it as shown below.

1from superflexpy.implementation.models.m4_sf_2011 import model
2
3model.set_input([P, E])
4model.set_timestep(1.0)
5model.reset_states()
6
7output = model.get_output()







Sharing models “privately” with other users

Model configurations can be shared “privately” between research groups without
waiting for a new release of the framework.

This can be done by creating a my_new_model.py file that initializes the
model and then sharing the file “privately” with other users.

The recipients of the new file can then save it on their machines and use
local importing. Assuming that the script that the recipients use to run the
model is in the same folder as the file initializing the model, the new model can be used as follows

1from .my_new_model import model
2
3model.set_input([P, E])
4model.set_timestep(1.0)
5model.reset_states()
6
7output = model.get_output()





Note the local import in line 1.

As we believe in the F.A.I.R. [https://www.go-fair.org/fair-principles/]
principles, we encourage modelers to share their models with the whole
community, using the procedure detailed earlier.



Dumping objects with Pickle

Python offers the module
Pickle [https://docs.python.org/3/library/pickle.html] to serialize objects
to binary files.  This approach enables the distribution of binary files, but
has the disadvantage of lacking transparency in the model structure.
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Interfacing SuperflexPy with other frameworks

SuperflexPy does not integrate tools for calibration or uncertainty analysis. In
this page we show an example on how a model built using SuperflexPy can be
interfaced with other tools to perform this task.


SuperflexPy + SPOTPY


Note

This example is for illustration purposes only, and as such does not
represent a specific recommendation of SPOTPY or of any specific
calibration algorithm.



SPOTPY [https://spotpy.readthedocs.io/en/latest/] is a Python framework for
calibration, uncertainty, and sensitivity analysis.

A model can be interfaced with SPOTPY by defining a class that wraps the model
and implements the following methods:


	__init__: initializes the class, defining some attributes;


	parameters: returns the parameters considered in the analysis (note
that they may not be all the parameters used by the SuperflexPy model but
only the ones that we want to vary in the analysis);


	simulation: returns the output of the simulation;


	evaluation: returns the observed output;


	objectivefunction: defines the objective function to use to evaluate
the simulation results.





Method __init__

 1import spotpy
 2
 3class spotpy_model(object):
 4
 5    def __init__(self, model, inputs, dt, observations, parameters, parameter_names, output_index):
 6
 7        self._model = model
 8        self._model.set_input(inputs)
 9        self._model.set_timestep(dt)
10
11        self._parameters = parameters
12        self._parameter_names = parameter_names
13        self._observarions = observations
14        self._output_index = output_index





The class spotpy_model is initialized defining the SuperflexPy model that is used.
The model, which can be any SuperflexPy component (from element to
network), must be defined before; the spotpy_model class sets only the inputs
and the dt.

Other variables necessary to initialize the class spotpy_model are:


	parameters and parameters_names, which define the parameters
considered in the calibration. The first variable is a list of spotpy.parameter
objects, the second variable is a list of the names of the SuperflexPy parameters;


	observations, which is an array of observed output values;


	output_index, which is the index of the output flux to be considered
when evaluating the SuperflexPy simulation. This specification is necessary in
the case of multiple output fluxes.






Method parameters

1    def parameters(self):
2        return spotpy.parameter.generate(self._parameters)





The method parameters generates a new parameter set using the SPOTPY functionalities.



Method simulation

 1    def simulation(self, parameters):
 2
 3        named_parameters = {}
 4        for p_name, p in zip(self._parameter_names, parameters):
 5            named_parameters[p_name] = p
 6
 7        self._model.set_parameters(named_parameters)
 8        self._model.reset_states()
 9        output = self._model.get_output()
10
11        return output[self._output_index]





The method simulation sets the parameters (lines 3-7), resets the states to their initial
value (line 8), runs the SuperflexPy model (line 9), and returns the output
flux for the evaluation of the objective function (line 11).



Method evaluation

1    def evaluation(self):
2        return self._observarions





The method evaluation returns the observed flux, used for the evaluation of the objective function.



Method objectivefunction

1    def objectivefunction(self, simulation, evaluation):
2
3        obj_fun = spotpy.objectivefunctions.nashsutcliffe(evaluation=evaluation,
4                                                          simulation=simulation)
5
6        return obj_fun





The method objectivefunction defines the objective function used to measure the model fit to the observed data. In this
case, the Nash-Sutcliffe efficiency is used.



Example of use

We now show how to employ the implementation above to calibrate a lumped model
composed of 2 reservoirs.

First, we initialize the SuperflexPy model, as follows
(see How to build a model with SuperflexPy for more details on how to set-up a model).

 1from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
 2from superflexpy.implementation.root_finders.pegasus import PegasusPython
 3from superflexpy.implementation.elements.hbv import PowerReservoir
 4from superflexpy.framework.unit import Unit
 5
 6root_finder = PegasusPython()
 7num_app = ImplicitEulerPython(root_finder=root_finder)
 8
 9reservoir_1 = PowerReservoir(parameters={'k': 0.1, 'alpha': 2.0},
10                            states={'S0': 10.0},
11                            approximation=num_app,
12                            id='FR1')
13reservoir_2 = PowerReservoir(parameters={'k': 0.5, 'alpha': 1.0},
14                            states={'S0': 10.0},
15                            approximation=num_app,
16                            id='FR2')
17
18hyd_mod = Unit(layers=[[reservoir_1],
19                       [reservoir_2]],
20               id='model')





Then, we initialize an instance of the spotpy_model class

 1spotpy_hyd_mod = spotpy_model(
 2    model=hyd_mod,
 3    inputs=[P],
 4    dt=1.0,
 5    observations=Q_obs,
 6    parameters=[
 7        spotpy.parameter.Uniform('model_FR1_k', 1e-4, 1e-1),
 8        spotpy.parameter.Uniform('model_FR2_k', 1e-3, 1.0),
 9    ],
10    parameter_names=['model_FR1_k', 'model_FR2_k'],
11    output_index=0
12)





The arrays P and Q_obs in lines 3 and 5 contain time series of precipitation (input)
and observed streamflow (output). In this example, lines 6-10 indicate the two parameters that we calibrate
(model_FR1_k and model_FR2_k) together with their range of
variability.

We can now call the SPOTPY method to calibrate the model. Here, the SCE algorithm option is used.

1sampler = spotpy.algorithms.sceua(spotpy_hyd_mod, dbname='calibration', dbformat='csv')
2sampler.sample(repetitions=5000)
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Examples

The following examples are available as Jupyter notebooks. All examples can be either
visualized on GitHub or run in a sandbox environment.


	Run a simple model visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/01_run_simple_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F01_run_simple_model.ipynb]


	Calibrate a model visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/02_calibrate_a_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F02_calibrate_a_model.ipynb]


	Initialize a single element model visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/03_init_single_element_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F03_init_single_element_model.ipynb]


	Initialize a single unit model: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/04_init_single_unit_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F04_init_single_unit_model.ipynb]


	Initialize a simple node model: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/05_init_single_node_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F05_init_single_node_model.ipynb]


	Initialize a complete (network) model: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/06_init_complete_model.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F06_init_complete_model.ipynb]


	Create a new reservoir: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/07_create_reservoir.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F07_create_reservoir.ipynb]


	Replicate GR4J: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/08_GR4J.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F08_GR4J.ipynb]


	Replicate Hymod: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/09_Hymod.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F09_Hymod.ipynb]


	Replicate M02 in Dal Molin et al., HESS, 2020: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/10_Thur_M2.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F10_Thur_M2.ipynb]


	Replicate M4 in Kavetski and Fenicia, WRR, 2011: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/11_M4_sfPaper.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F11_M4_sfPaper.ipynb]


	Modify M4 in Kavetski and Fenicia, WRR, 2011: visualize [https://github.com/dalmo1991/superflexPy/blob/master/examples/12_M4_sfPaper_changed.ipynb] - run [https://mybinder.org/v2/gh/dalmo1991/superflexPy/master?filepath=examples%2F12_M4_sfPaper_changed.ipynb]
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Automated testing

Current testing of SuperflexPy consists of validating its numerical results
against the original implementation of
Superflex [https://doi.org/10.1029/2010WR010174]. This testing is done for
selected model configurations and selected sets of parameters and inputs.

This testing strategy implicitly checks auxiliary methods, including setting
parameters and states, retrieving the internal fluxes of the model, setting
inputs and getting outputs, etc..

The testing code is contained in folder test and uses the Python module
unittest. The folder contains reference_results
and unittest containing the scripts that run the tests.

Current testing covers:


	Specific elements (reservoirs and lag functions) that
are implemented in Superflex (e.g. 01_FR.py, 02_UR.py);


	Multiple elements in a unit (e.g.
03_UR_FR.py, 04_UR_FR_SR.py);


	Multiple units in a node (e.g. 05_2HRUs.py);


	Multiple nodes inside a network (e.g.
06_3Cats_2HRUs.py);


	Auxiliary methods, which are tested implicitly, i.e. assuming that
errors in the auxiliary methods propagate to the results.




Current testing does not cover:


	Elements for which numerical results are not available (e.g. some components
of GR4J);


	Usage of the Explicit Euler solver;


	Edge cases (e.g. extreme values of parameters and states)




Users contributing SuperflexPy extensions should provide reference
results and the code that tests them (including input data and model parameter
values).

As the SuperflexPy framework continues to develop, additional facilities for
unit-testing and integrated-testing will be employed.


Automation

Any push of new code to any branch on the github repository will trigger
automatic testing based on the scripts contained in the folder
test/unittest.
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License

                   GNU LESSER GENERAL PUBLIC LICENSE
                       Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.


  This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

  0. Additional Definitions.

  As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

  "The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

  An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

  A "Combined Work" is a work produced by combining or linking an
Application with the Library.  The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

  The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

  The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

  1. Exception to Section 3 of the GNU GPL.

  You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

  2. Conveying Modified Versions.

  If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

   a) under this License, provided that you make a good faith effort to
   ensure that, in the event an Application does not supply the
   function or data, the facility still operates, and performs
   whatever part of its purpose remains meaningful, or

   b) under the GNU GPL, with none of the additional permissions of
   this License applicable to that copy.

  3. Object Code Incorporating Material from Library Header Files.

  The object code form of an Application may incorporate material from
a header file that is part of the Library.  You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

   a) Give prominent notice with each copy of the object code that the
   Library is used in it and that the Library and its use are
   covered by this License.

   b) Accompany the object code with a copy of the GNU GPL and this license
   document.

  4. Combined Works.

  You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

   a) Give prominent notice with each copy of the Combined Work that
   the Library is used in it and that the Library and its use are
   covered by this License.

   b) Accompany the Combined Work with a copy of the GNU GPL and this license
   document.

   c) For a Combined Work that displays copyright notices during
   execution, include the copyright notice for the Library among
   these notices, as well as a reference directing the user to the
   copies of the GNU GPL and this license document.

   d) Do one of the following:

       0) Convey the Minimal Corresponding Source under the terms of this
       License, and the Corresponding Application Code in a form
       suitable for, and under terms that permit, the user to
       recombine or relink the Application with a modified version of
       the Linked Version to produce a modified Combined Work, in the
       manner specified by section 6 of the GNU GPL for conveying
       Corresponding Source.

       1) Use a suitable shared library mechanism for linking with the
       Library.  A suitable mechanism is one that (a) uses at run time
       a copy of the Library already present on the user's computer
       system, and (b) will operate properly with a modified version
       of the Library that is interface-compatible with the Linked
       Version.

   e) Provide Installation Information, but only if you would otherwise
   be required to provide such information under section 6 of the
   GNU GPL, and only to the extent that such information is
   necessary to install and execute a modified version of the
   Combined Work produced by recombining or relinking the
   Application with a modified version of the Linked Version. (If
   you use option 4d0, the Installation Information must accompany
   the Minimal Corresponding Source and Corresponding Application
   Code. If you use option 4d1, you must provide the Installation
   Information in the manner specified by section 6 of the GNU GPL
   for conveying Corresponding Source.)

  5. Combined Libraries.

  You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

   a) Accompany the combined library with a copy of the same work based
   on the Library, uncombined with any other library facilities,
   conveyed under the terms of this License.

   b) Give prominent notice with the combined library that part of it
   is a work based on the Library, and explaining where to find the
   accompanying uncombined form of the same work.

  6. Revised Versions of the GNU Lesser General Public License.

  The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

  Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

  If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
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Reference

This reference provides details of the classes within SuperflexPy. This page is
limited to the core framework (i.e. content of superflexpy/framework/
and superflexpy/utils/), in order to provide a clear reference for the
classes that should be customized to extend SuperflexPy. Particular
implementations of  components (i.e. the content of
superflexpy/implementation/) are not included.

The following diagram follows the standards of
UML [https://en.wikipedia.org/wiki/Class_diagram] and shows the organization
of the classes composing the framework. All the classes in the diagram can be
extended through inheritance to create customized components.

[image: _images/class_uml.png]

superflexpy.framework.element


	
class superflexpy.framework.element.BaseElement(id)

	Bases: object

This is the abstract class for the creation of a BaseElement. A BaseElement
does not have parameters or states.


	
_num_downstream = None

	Number of downstream elements






	
_num_upstream = None

	Number of upstream elements






	
input = {}

	Dictionary of input fluxes






	
__init__(id)

	This is the initializer of the abstract class BaseElement.


	Parameters:

	id (str) – Identifier of the element. All the elements of the framework must
have an identifier.










	
set_input(input)

	To be implemented by any child class. It populates the self.input
dictionary.


	Parameters:

	input (list(numpy.ndarray)) – List of input fluxes to the element.










	
get_output(solve=True)

	To be implemented by any child class. It solves the element and returns
the output fluxes.


	Parameters:

	solve (bool) – True if the element has to be solved (i.e. calculate the states).



	Returns:

	List of output fluxes.



	Return type:

	list(numpy.ndarray)










	
property num_downstream

	Number of downstream elements.






	
property num_upstream

	Number of upstream elements










	
class superflexpy.framework.element.ParameterizedElement(parameters, id)

	Bases: BaseElement

This is the abstract class for the creation of a ParameterizedElement. A
ParameterizedElement has parameters but not states.


	
_prefix_parameters = ''

	Prefix applied to the original names of the parameters






	
__init__(parameters, id)

	This is the initializer of the abstract class ParameterizedElement.


	Parameters:

	
	parameters (dict) – Parameters controlling the element. The parameters can be either
a float (constant in time) or a numpy.ndarray of the same length
of the input fluxes (time variant parameters).


	id (str) – Identifier of the element. All the elements of the framework must
have an identifier.













	
get_parameters(names=None)

	This method returns the parameters of the element.


	Parameters:

	names (list(str)) – Names of the parameters to return. The names must be the ones
returned by the method get_parameters_name. If None, all the
parameters are returned.



	Returns:

	Parameters of the element.



	Return type:

	dict










	
get_parameters_name()

	This method returns the names of the parameters of the element.


	Returns:

	List with the names of the parameters.



	Return type:

	list(str)










	
set_parameters(parameters)

	This method sets the values of the parameters.


	Parameters:

	parameters (dict) – Contains the parameters of the element to be set. The keys must be
the ones returned by the method get_parameters_name. Only the
parameters that have to be changed should be passed.










	
add_prefix_parameters(prefix)

	This method add a prefix to the name of the parameters of the element.


	Parameters:

	prefix (str) – Prefix to be added. It cannot contain ‘_’.














	
class superflexpy.framework.element.StateElement(states, id)

	Bases: BaseElement

This is the abstract class for the creation of a StateElement. A
StateElement has states but not parameters.


	
_prefix_states = ''

	Prefix applied to the original names of the parameters






	
__init__(states, id)

	This is the initializer of the abstract class StateElement.


	Parameters:

	
	states (dict) – Initial states of the element. Depending on the element the states
can be either a float or a numpy.ndarray.


	id (str) – Identifier of the element. All the elements of the framework must
have an id.













	
get_states(names=None)

	This method returns the states of the element.


	Parameters:

	names (list(str)) – Names of the states to return. The names must be the ones
returned by the method get_states_name. If None, all the
states are returned.



	Returns:

	States of the element.



	Return type:

	dict










	
get_states_name()

	This method returns the names of the states of the element.


	Returns:

	List with the names of the states.



	Return type:

	list(str)










	
set_states(states)

	This method sets the values of the states.


	Parameters:

	states (dict) – Contains the states of the element to be set. The keys must be
the ones returned by the method get_states_name. Only the
states that have to be changed should be passed.










	
reset_states()

	This method sets the states to the values provided to the __init__
method. If a state was initialized as None, it will not be reset.






	
add_prefix_states(prefix)

	This method add a prefix to the id of the states of the element.


	Parameters:

	prefix (str) – Prefix to be added. It cannot contain ‘_’.














	
class superflexpy.framework.element.StateParameterizedElement(parameters, states, id)

	Bases: StateElement, ParameterizedElement

This is the abstract class for the creation of a StateParameterizedElement.
A StateParameterizedElement has parameters and states.


	
__init__(parameters, states, id)

	This is the initializer of the abstract class
StateParameterizedElement.


	Parameters:

	
	parameters (dict) – Parameters controlling the element. The parameters can be either
a float (constant in time) or a numpy.ndarray of the same length
of the input fluxes (time variant parameters).


	states (dict) – Initial states of the element. Depending on the element the states
can be either a float or a numpy.ndarray.


	id (str) – Identifier of the element. All the elements of the framework must
have an id.

















	
class superflexpy.framework.element.ODEsElement(parameters, states, approximation, id)

	Bases: StateParameterizedElement

This is the abstract class for the creation of a ODEsElement. An ODEsElement
is an element with states and parameters that is controlled by an ordinary
differential equation, of the form:

dS/dt = input - output


	
_num_upstream = 1

	Number of upstream elements






	
_num_downstream = 1

	Number of downstream elements






	
_solver_states = []

	List of states used by the solver of the differential equation






	
_fluxes = []

	This attribute contains a list of methods (one per differential equation)
that calculate the values of the fluxes needed to solve the differential
equations that control the element. The single functions must return the
fluxes as a list where incoming fluxes are positive and outgoing are
negative. Here is a list of the required outputs of the single functions:


	list(floats)
	Values of the fluxes given states, inputs, and parameters.



	float
	Minimum value of the state. Used, sometimes, by the numerical solver
to search for the solution.



	float
	Maximum value of the state. Used, sometimes, by the numerical solver
to search for the solution.



	list(floats)
	Values of the derivatives of the fluxes w.r.t. the states.










	
__init__(parameters, states, approximation, id)

	This is the initializer of the abstract class ODEsElement.


	Parameters:

	
	parameters (dict) – Parameters controlling the element. The parameters can be either
a float (constant in time) or a numpy.ndarray of the same length
of the input fluxes (time variant parameters).


	states (dict) – Initial states of the element. Depending on the element the states
can be either a float or a numpy.ndarray.


	approximation (superflexpy.utils.numerical_approximation.NumericalApproximator) – Numerial method used to approximate the differential equation


	id (str) – Identifier of the element. All the elements of the framework must
have an id.













	
set_timestep(dt)

	This method sets the timestep used by the element.


	Parameters:

	dt (float) – Timestep










	
get_timestep()

	This method returns the timestep used by the element.


	Returns:

	Timestep



	Return type:

	float










	
define_numerical_approximation(approximation)

	This method define the solver to use for the differential equation.


	Parameters:

	solver (superflexpy.utils.root_finder.RootFinder) – Solver used to find the root(s) of the differential equation(s).
Child classes may implement their own solver, therefore the type
of the solver is not enforced.










	
_solve_differential_equation(**kwargs)

	This method calls the solver of the differential equation(s). When
called, it solves the differential equation(s) for all the timesteps
and populates self.state_array.










	
class superflexpy.framework.element.LagElement(parameters, states, id)

	Bases: StateParameterizedElement

This is the abstract class for the creation of a LagElement. An LagElement
is an element with states and parameters that distributes the incoming
fluxes according to a weight array

Parameters must be called:


	‘lag-time’: characteristic time of the lag. Its definition depends on the
specific implementations of the element. It can be a scalar (it will be
applied to all the fluxes) or a list (with length equal to the number of
fluxes).




States must be called:


	lag: initial state of the lag function. If None it will be initialized
to zeros. It can be a numpy.ndarray (it will be applied to all the fluxes)
of a list on numpy.ndarray (with length equal to the number of fluxes).





	
_num_upstream = 1

	Number of upstream elements






	
_num_downstream = 1

	Number of downstream elements






	
_build_weight(lag_time)

	This method must be implemented by any child class. It calculates the
weight array(s) based on the lag_time.


	Parameters:

	lag_time (float) – Characteristic time of the lag function.



	Returns:

	List of weight array(s).



	Return type:

	list(numpy.ndarray)










	
set_input(input)

	This method sets the inputs to the elements. Since the name of the
inputs is not important, the fluxes are stored as list.


	Parameters:

	input (list(numpy.ndarray)) – List of input fluxes.










	
get_output(solve=True)

	This method returns the output of the LagElement. It applies the lag
to all the incoming fluxes, according to the weight array(s).


	Parameters:

	solve (bool) – True if the element has to be solved (i.e. calculate the states).



	Returns:

	List of output fluxes.



	Return type:

	list(numpy.ndarray)










	
reset_states()

	This method sets the states to the values provided to the __init__
method. In this case, if a state was initialized as None, it will be
set back to None.






	
static _solve_lag(weight, lag_state, input)

	This method distributes the input fluxes according to the weight array
and the initial state.


	Parameters:

	
	weight (list(numpy.ndarray)) – List of weights to use


	lag_state (list(numpy.ndarray)) – List of the initial states of the lag.


	input (list(numpy.ndarray)) – List of fluxes






	Returns:

	3D array (dimensions: number of timesteps, number of fluxes, max
lag length) that stores all the states of the lag in time



	Return type:

	numpy.ndarray










	
_init_lag_state(lag_time)

	This method sets the initial state of the lag to arrays of proper
length.


	Parameters:

	lag_time (list(float)) – List of lag times



	Returns:

	List of the initial states of the lag.



	Return type:

	list(numpy.ndarray)















superflexpy.utils.generic_component


	
class superflexpy.utils.generic_component.GenericComponent

	Bases: object

This is the abstract class for the creation of the components Unit, Node,
and Network. It defines a series of methods that are common among the
components.


	
_content_pointer = {}

	Dictionary that maps the id of the components to their location






	
_content = []

	List (or dictionary) of the component contained






	
_local_parameters = {}

	Dictionary that contains the parameters that are specific to the component






	
_local_states = {}

	Dictionary that contains the states that are specific to the component






	
_init_local_states = {}

	Dictionary that contains the value of the states, which that are specific
to the component, at initialization.






	
_prefix_local_parameters = ''

	Prefix applied to local parameters






	
_prefix_local_states = ''

	Prefix applied to local states






	
get_parameters(names=None)

	This method returns the parameters of the component and of the ones
contained.


	Parameters:

	names (list(str)) – Names of the parameters to return. The names must be the ones
returned by the method get_parameters_name. If None, all the
parameters are returned.



	Returns:

	Parameters of the element.



	Return type:

	dict










	
get_parameters_name()

	This method returns the names of the parameters of the component and of
the ones contained.


	Returns:

	List with the names of the parameters.



	Return type:

	list(str)










	
_find_content_from_name(name)

	This method finds a component using the name of the parameter or the
state.


	Parameters:

	name (str) – Name to use for the search



	Returns:

	Index of the component in self._content



	Return type:

	int or tuple










	
set_parameters(parameters)

	This method sets the values of the parameters.


	Parameters:

	parameters (dict) – Contains the parameters of the element to be set. The keys must be
the ones returned by the method get_parameters_name. Only the
parameters that have to be changed should be passed.










	
get_states(names=None)

	This method returns the states of the component and of the ones
contained.


	Parameters:

	names (list(str)) – Names of the states to return. The names must be the ones
returned by the method get_states_name. If None, all the
states are returned.



	Returns:

	States of the element.



	Return type:

	dict










	
get_states_name()

	This method returns the names of the states of the component and of the
ones contained.


	Returns:

	List with the names of the states.



	Return type:

	list(str)










	
set_states(states)

	This method sets the values of the states.


	Parameters:

	states (dict) – Contains the states of the element to be set. The keys must be
the ones returned by the method get_states_name. Only the
states that have to be changed should be passed.










	
reset_states(id=None)

	This method sets the states to the values provided to the __init__
method. If a state was initialized as None, it will not be reset.


	Parameters:

	id (list(str)) – List of element’s id where the method is applied.










	
get_timestep()

	This method returns the timestep used by the element.


	Returns:

	Timestep



	Return type:

	float










	
set_timestep(dt)

	This method sets the timestep used by the element.


	Parameters:

	dt (float) – Timestep










	
define_solver(solver)

	This method define the solver to use for the differential equation.


	Parameters:

	solver (superflexpy.utils.root_finder.RootFinder) – Solver used to find the root(s) of the differential equation(s).
Child classes may implement their own solver, therefore the tipe
of the solver is not enforced.















superflexpy.framework.unit


	
class superflexpy.framework.unit.Unit(layers, id, parameters=None, states=None, copy_pars=True)

	Bases: GenericComponent

This class defines a Unit. A unit can be part of a node and it is a
collection of elements. It’s task is to build the basic structure,
connecting different elements. Mathematically, it is a directed acyclic
graph.


	
__init__(layers, id, parameters=None, states=None, copy_pars=True)

	This is the initializer of the class Unit.


	Parameters:

	
	layers (list(list(superflexpy.framework.element.BaseElement))) – This list defines the structure of the unit. The elements are
arranged in layers (upstream to downstream) and each layer can
contain multiple elements.


	id (str) – Identifier of the unit. All the units of the framework must have an
identifier.


	copy_pars (bool) – True if the parameters of the elements are copied instead of being
shared among the different Units.













	
set_input(input)

	This method sets the inputs to the unit.


	Parameters:

	input (list(numpy.ndarray)) – List of input fluxes.










	
get_output(solve=True)

	This method solves the Unit, solving each Element and putting together
their outputs according to the structure.


	Parameters:

	solve (bool) – True if the elements have to be solved (i.e. calculate the states).



	Returns:

	List containing the output fluxes of the unit.



	Return type:

	list(numpy.ndarray)










	
append_layer(layer)

	This method appends a layer to the structure.


	Parameters:

	layer (list(superflexpy.framework.elements.BaseElement)) – Layer to be appended.










	
insert_layer(layer, position)

	This method inserts a layer in the unit structure.


	Parameters:

	
	layer (list(superflexpy.framework.elements.BaseElement)) – Layer to be inserted.


	position (int) – Position where the layer is inserted.













	
get_internal(id, attribute)

	This method allows to inspect attributes of the objects that belong to
the unit.


	Parameters:

	
	id (str) – Id of the object.


	attribute (str) – Name of the attribute to expose.






	Returns:

	Attribute exposed



	Return type:

	Unknown










	
call_internal(id, method, **kwargs)

	This method allows to call methods of the objects that belong to the
unit.


	Parameters:

	
	id (str) – Id of the object.


	method (str) – Name of the method to call.






	Returns:

	Output of the called method.



	Return type:

	Unknown










	
add_prefix_parameters(id)

	This method adds the prefix to the parameters of the elements that are
contained in the unit.


	Parameters:

	id (str) – Prefix to add.










	
add_prefix_states(id)

	This method adds the prefix to the states of the elements that are
contained in the unit.


	Parameters:

	id (str) – Prefix to add.










	
_construct_dictionary()

	This method populates the self._content_pointer dictionary.






	
_find_attribute_from_name(id, function)

	This method is used to find the attributes or methods of the components
contained for post-run inspection.


	Parameters:

	
	id (str) – Identifier of the component


	function (str) – Name of the attribute or method






	Returns:

	Attribute or method to inspect



	Return type:

	Unknown










	
_check_layers()

	This method controls if the layers respect all the rules in terms of
number of upstream/downstream elements.











superflexpy.framework.node


	
class superflexpy.framework.node.Node(units, weights, area, id, parameters=None, states=None, shared_parameters=True)

	Bases: GenericComponent

This class defines a Node. A node can be part of a network and it is a
collection of Units. It’s task is to sum the outputs of the Units,
applying, if present, a routing.


	
__init__(units, weights, area, id, parameters=None, states=None, shared_parameters=True)

	This is the initializer of the class Node.


	Parameters:

	
	units (list(superflexpy.framework.unit.Unit)) – List of Units contained in the Node.


	weights (list) – List of weights to be applied to the Units when putting together
their outputs. The order must be the same used in the units list.
If a weight is a list, then different fluxes coming from the same
unit have a different weight.


	area (float) – Influence area of the node. It is the net value: if a node has
other nodes upstream, their area is not counted.


	id (str) – Identifier of the node. All the nodes of the framework must have an
identifier.


	shared_parameters (bool) – True if the parameters of the Units are shared among the different
Nodes.













	
set_input(input)

	This method sets the inputs to the node.


	Parameters:

	input (list(numpy.ndarray)) – List of input fluxes.










	
get_output(solve=True)

	This method solves the Node, solving each Unit and putting together
their outputs according to the weight.


	Parameters:

	solve (bool) – True if the elements have to be solved (i.e. calculate the states).



	Returns:

	List containig the output fluxes of the node.



	Return type:

	list(numpy.ndarray)










	
get_internal(id, attribute)

	This method allows to inspect attributes of the objects that belong to
the node.


	Parameters:

	
	id (str) – Id of the object. If it is not a unit, it must contain the ids of
the object containing it. If, for example it is an element, the id
will be idUnit_idElement.


	attribute (str) – Name of the attribute to expose.






	Returns:

	Attribute exposed



	Return type:

	Unknown










	
call_internal(id, method, **kwargs)

	This method allows to call methods of the objects that belong to the
node.


	Parameters:

	
	id (str) – Id of the object. If it is not a unit, it must contain the ids of
the object containing it. If, for example it is an element, the id
will be idUnit_idElement.


	method (str) – Name of the method to call.






	Returns:

	Output of the called method.



	Return type:

	Unknown










	
add_prefix_parameters(id, shared_parameters)

	This method adds the prefix to the parameters of the elements that are
contained in the node.


	Parameters:

	id (str) – Prefix to add.










	
add_prefix_states(id)

	This method adds the prefix to the states of the elements that are
contained in the node.


	Parameters:

	id (str) – Prefix to add.










	
external_routing(flux)

	This methods applies the external routing to the fluxes. External
routing is the one that affects the fluxes moving from the outflow of
this node to the outflow of the one downstream. This function is used
by the Network.


	Parameters:

	flux (list(numpy.ndarray)) – List of fluxes on which the routing has to be applied.










	
_find_attribute_from_name(id)

	This method is used to find the attributes or methods of the components
contained for post-run inspection.


	Parameters:

	id (str) – Identifier of the component



	Returns:

	Index of the component to look for and indication if it is an
element (True) or not.



	Return type:

	int, bool










	
_internal_routing(flux)

	Internal routing is the one that affects the flux coming to the Units
and reaching the outflow of the node. This function is internally
used by the node.











superflexpy.framework.network


	
class superflexpy.framework.network.Network(nodes, topology)

	Bases: GenericComponent

This class defines a Network. A network is a collection of Nodes and it is
used to route the fluxes from upstream to downstream. A network must be a
tree.


	
__init__(nodes, topology)

	This is the initializer of the class Network.


	Parameters:

	
	nodes (list(superflexpy.framework.node.Node)) – List of nodes that belongs to the network. The order is not
important.


	topology (dict(str : str)) – Topology of the network. Keys are the id of the nodes and values
are the id of the downstream node the key. Since the network must
be a tree, each key has only one downstream element













	
get_output(solve=True)

	This method solves the network, solving each node and putting together
their outputs according to the topology of the network.


	Parameters:

	solve (bool) – True if the elements have to be solved (i.e. calculate the states).



	Returns:

	Dictionary containig the output fluxes of all the nodes.



	Return type:

	dict(str : list(numpy.ndarray))










	
get_internal(id, attribute)

	This method allows to inspect attributes of the objects that belong to
the network.


	Parameters:

	
	id (str) – Id of the object. If it is not a node, it must contain the ids of
the object containing it. If, for example it is a unit, the id will
be idNode_idUnit.


	attribute (str) – Name of the attribute to expose.






	Returns:

	Attribute exposed



	Return type:

	Unknown










	
call_internal(id, method, **kwargs)

	This method allows to call methods of the objects that belong to the
the network.


	Parameters:

	
	id (str) – Id of the object. If it is not a node, it must contain the ids of
the object containing it. If, for example it is a unit, the id will
be idNode_idUnit.


	method (str) – Name of the method to call.






	Returns:

	Output of the called method.



	Return type:

	Unknown










	
_build_network()

	This method constructs all the structures needed to solve the network






	
_find_attribute_from_name(id)

	This method is used to find the attributes or methods of the components
contained for post-run inspection.


	Parameters:

	id (str) – Identifier of the component



	Returns:

	Index of the component to look for and indication if it is an
element or a unit (True) or not.



	Return type:

	int, bool















superflexpy.utils.root_finder


	
class superflexpy.utils.root_finder.RootFinder(tol_F=1e-08, tol_x=1e-08, iter_max=10)

	Bases: object

This is the abstract class for the creation of a RootFinder. It defines how
the solver of the differential equation must be implemented.


	
architecture = None

	Implementation required to increase the performance (e.g. numba)






	
__init__(tol_F=1e-08, tol_x=1e-08, iter_max=10)

	The constructor of the subclass must accept the parameters of the
solver.


	Parameters:

	
	tol_F (float) – Tolerance on the y axis (distance from 0) that stops the solver


	tol_x (float) – Tolerance on the x axis (distance between two roots) that stops
the solver


	iter_max (int) – Maximum number of iteration of the solver. After this value it
raises a runtime error













	
get_settings()

	This method returns the settings of the root finder.


	Returns:

	
	float – Function tollerance (tol_F)


	float – X tollerance (tol_x)


	int – Maximum number of iterations (iter_max)















	
solve(*args, **kwargs)

	To be implemented by any child class. This method finds the root of the
numerical approximation of the differential equation. It can operate
over the whole time series.











superflexpy.utils.numerical_approximator


	
class superflexpy.utils.numerical_approximator.NumericalApproximator(root_finder)

	Bases: object

This is the abstract class for the creation of a NumericalApproximator. It
defines how the approximator of the differential equation must be
implemented to fit in the framework


	
architecture = None

	Defines if the element is implemented using some pre-compiled libraries
(e.g. numba)






	
__init__(root_finder)

	The constructor of the subclass must accept the parameters of the
approximator.


	Parameters:

	root_finder (superflexpy.utils.root_finder.RootFinder) – Solver used to find the root(s) of the differential equation(s).










	
solve(fun, S0, **kwargs)

	This method solves an approximation of the ODE.


	Parameters:

	
	fun (list(function)) – List of functions to calculate the fluxes of the ODEs. One equation
for ODE. The function must accept:


	State, called S, used to evaluate the fluxes


	Initial state of the element, called S0, used to calculate
the mainimum and maximum possible state of the reservoir


	Other parameters (**kwargs) needed to calculate the fluxes




The function must return:


	list of fluxes with positive sign if incoming and negative if
outgoing


	minimum possible value of the state


	maximum possible value of the state







	S0 (list(float)) – Initial states used for the ODEs. One value per fun


	**kwargs – Additional arguments needed by fun. It must also contain dt.






	Returns:

	Array of solutions of the ODEs. It is a 2D array with dimensions
(#timesteps, #functions)



	Return type:

	numpy.ndarray

















            

          

      

      

    

  

    
      
          
            
  
Note

Last update 25/11/2023




Change log


Version 1.3.2


Minor changes


	Pull request [https://github.com/dalmo1991/superflexPy/pull/9] from
alessandro-mariotti-zupit [https://github.com/alessandro-mariotti-zupit]
that upgrades python and packages versions.







Version 1.3.1


Minor changes


	Added the classifier Topic :: Scientific/Engineering :: Hydrology







Version 1.3.0


Major changes to existing components


	ODEsElements can now return the derivative of the fluxes together with
the fluxes. This enables the usage of numerical solvers that use the
derivatives (e.g., Newton methods).


	Folder structure improved. The numerical approximators and the root finders
have been moved from the folder implementation/computation to
implementation/numerical_approximators and
implementation/root_finders, respectively. Names of the files have
been slightly modified to be coherent with this new folder organization.






New code


	Implemented a new numerical approximator implementing Runge Kutta 4


	Implemented a new root finder implementing a Newton-bisection method


	Implemented a new root finder implementing a trivial algorithm to solve
explicit algebraic equations.







Version 1.2.1


Minor changes


	The network attribute topography has been changed to topology.







Version 1.2.0


Major changes to existing components


	The abbreviation of “differential equation” changes, in the code, from
dif_eq to diff_eq. This change regards variables names, both
in the methods arguments and implementation.


	The class FastReservoir has been changed to PowerReservoir. No
changes in the functionality of the class.






Minor changes


	Testing improved.







Version 1.1.0


Major changes to existing components


	Form this version, SuperflexPy is released under license LGPL. For details,
read License






Minor changes to existing components


	Bug fix on the solution of the differential equations of the reservoirs. The
calculation of the maximum storage was not correct.







Version 1.0.0

Version 1.0.0 represents the first mature release of SuperflexPy. Many aspects
have changed since earlier 0.x releases both in terms of code organization
and conceptualization of the framework. Models built with versions 0.x are
not compatible with this version and with the following releases.


Major changes to existing components


	New numerical solver structure for elements controlled by ordinary
differential equations (ODEs). A new component, the
NumericaApproximator is introduced; its task it to get the fluxes from
the elements and construct an approximation of the ODEs. In the previous
release of the framework the approximation was hard coded in the element
implementation.


	ODEsElement have now to implement the methods _fluxes and
_fluxes_python instead of _differential_equation


	Added the possibility for nodes and units to have local states and parameters.
To this end, some internal functionalities for finding the element given the
id have been changed to account for the presence of states and
parameters at a level higher then the elements.






Minor changes to existing components


	Added implicit or explicit check at initialization of units, nodes, and
network that the components that they contain are of the right type (e.g. a
node must contain units)


	Minor changes to RootFinder to accommodate the new numerical
implementation.


	Added Numba implementation of GR4J elements






New code


	Added hymod elements
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