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SuperflexPy

SuperflexPy is an open-source framework written in Python for constructing
flexible, conceptual, distributed hydrological models.

SuperflexPy builds on our 10-years-experience with the development and
application of Superflex [https://doi.org/10.1029/2010WR010174]. The
new framework is a completely new implementation of Superflex and
expands the possibility offered by the old version, allowing to build completely
customized, spatially-distributed hydrological models.

Thanks to its object-oriented architecture, SuperflexPy can be easily
extended to satisfy your own needs, creating new elements with a
completely customized logic, just in a few lines of pure Python code.

Constructing a semi-distributed conceptual hydrological model will be
straightforward with SuperflexPy, with a user experience similar to any
other Python framework:


	inputs and outputs are handled directly by the modeler using common Python
libraries (e.g. Numpy or Pandas for reading from text files) without the need
of customized input files and long pre- and post-processing to adapt the data
to the model;


	the elements of the framework are declared and initialized through a Python
script, without the need of long and complicated setup text files;


	all the elements of the framework are objects with built-in functionalities
for handling parameters and states, routing the fluxes, and solving common
structures present in conceptual models (e.g. reservoirs, lag functions,
etc.);


	the mathematical model is separated from the numerical model, allowing for
testing different numerical methods for solving differential equations;


	the framework can be run at any level of complexity, from a single bucket
to an entire river network;


	the framework is easy interface with other Python modules for calibration
and uncertainty analysis; we will provide an interface to common frameworks.





Team

SuperflexPy is actively developed at Eawag [https://www.eawag.ch],
by researchers in the Hydrological modelling group [https://www.eawag.ch/en/department/siam/main-focus/hydrological-modelling/],
with the support of external people.

The core team consists of:


	Marco Dal Molin [https://www.eawag.ch/~dalmolma] (implementation and design)


	Dr. Fabrizio Fenicia [https://www.eawag.ch/en/aboutus/portrait/organisation/staff/profile/fabrizio-fenicia/show/]
(design and supervision)


	Prof. Dmitri Kavetski [https://www.adelaide.edu.au/directory/dmitri.kavetski]
(design and supervision)







Stay in touch

If you want to get e-mails about future developments of the framework, please
subscribe to our mailing list clicking here [https://forms.gle/utLbF6KWqvqS7LHZ7].




Code and demos

The source code can be accessed at the repository [https://github.com/dalmo1991/superflexPy/].

A demo, implementing GR4J, is available in a Colab Notebook [https://colab.research.google.com/drive/1XBmkTY_1KsP1l8extzhomOOC-vH8PN9j].
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Installation

SuperflexPy has been developed and tested using Python 3 (version 3.7.4). It is
not compatible with Python 2.

SuperflexPy is available as Python package at PyPI repository, at the link
https://pypi.org/project/superflexpy

The simplest way to install SuperflexPy is using the package installer for
Python (pip) running the command

pip install superflexpy





After the first installation, to upgrade to a new version run the command

pip install --upgrade superflexpy






Dependencies

SuperflexPy needs the following python packages to run


	numpy [https://docs.scipy.org/doc/numpy/user/install.html]


	numba [https://numba.pydata.org/numba-doc/dev/user/installing.html]




All the packages are available through pip.

The installation of numba is necessary only if the modeler decides to use the
numba optimized implementation of the numerical solvers. GPU acceleration (CUDA)
is not needed and, therefore, it is not supported.
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Software organization and contribution

[image: _images/schematic.png]
The superflexPy framework is composed by different pieces that are necessary to
fully understand and use the framework:


	Source code: it contains all the code necessary to use the framework at
its latest (and potentially unstable) version. It should be accessed only by
an advanced user who wants to understand the internal functioning, install
manually the latest version, or expand the framework.


	Packaged release: it allows the user to easily get and install a stable
version of the framework.


	Documentation: it explains the functioning of the framework in its
details.


	Examples: they are the “place-to-start” for a new user, providing working
models and showcasing potential applications.


	Scientific publication: it is a peer-reviewed publication that presents
the framework to the public and puts it in prospective with other existing
solutions.




Source code, documentation, and examples are part of the official repository of
SuperflexPy that is hosted on
GitHub [https://github.com/dalmo1991/superflexPy]. The repository is the only
place where code, documentation, and examples should be modified.

New releases of the software are distributed through the official Python Package
Index (PyPI) where SuperflexPy has a
dedicated page [https://pypi.org/project/superflexpy/].

Documentation is built automatically from the
source folder [https://github.com/dalmo1991/superflexPy/tree/master/doc] on
GitHub and published online in a
dedicated website [https://superflexpy.readthedocs.io/].

Examples are made available on GitHub as Jupyter notebooks and can be either
visualized statically or run in a sandbox environment.

The scientific publication is currently in preparation and it will be linked
here once accepted.


Contribution

Contribution to the framework can be made in different ways. Types of
contributions include:


	Submit issues on bugs, desired features, etc.


	Solve open issues.


	Extend the documentation with new use cases.


	Extend or modify the framework.


	Use and advertize the framework in your publication.




This page [https://www.dataschool.io/how-to-contribute-on-github/]
illustrates the typical workflow that should be followed when contributing to a
GitHub project. Please, try to follow it.


Branching scheme

Updates to SuperflexPy are made directly in the branch master, which
represent the most up-to-date branch. The branch release is not actively
updated since the only action that should be done is a merge from the
master, once a tangible update is available.

When something gets pushed to the branch release, a new version of the
package is automatically released on PyPI. Remember to change the version
number in the setup.py file.

Developers are free to create new branches but pull requests must be directed to
master and not to release.

Documentation and examples are generated from the content of the master
branch.
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Tip

If interested in the context in which SuperflexPy operates, please
check our publication (link here when available)




Principles of SuperflexPy

Numerical models are widely used in hydrology for prediction, process
understanding, and engineering applications.

Models can differ depending on how the processes are represented (conceptual
vs. physical based models) or on how the physical domain gets discretized (from
lumped configurations to detailed grid-based models).

Conceptual models are, at the catchment scale, among the most used due to their
limited number of parameters and high interpretability.


Conceptual models

Conceptual models are hydrological models that describe the dynamics directly
at the catchment scale, providing relationship between the storage of the
catchment and the outflow. Such models are usually relatively simple and cheap
to run; their simplicity allows to use conceptual models to explore the
processes directly at the catchment scale.

Thanks to their appealing features, a large variety of conceptual models has
been proposed in the last 40 years. These models are usually quite similar,
being composed by general elements such as reservoirs, lag functions, and
connections but, at the same time, they are all slightly different one from the
other, making model selection and comparison complicated.

Differences may appear in several levels:


	conceptualization: different models may decide to represent different
processes;


	mathematical model: the same process (e.g. a flux) may be represented by
different equations;


	numerical model: the same equation may be solved with different numerical
techniques.




In order to overcome these 3 problems and to facilitate the configuration and
comparison of different solutions, several flexible modeling frameworks have
been proposed in the last decade.




Flexible modelling frameworks

A flexible modeling framework is a software platform that allows the user to
build customized hydrological models that, usually, differ in the
conceptualization but share the same mathematical and numerical formulation.

In order to achieve this result, flexible modeling frameworks usually offer a
library of generic elements (e.g., reservoirs, lag functions, connections, etc.)
and the possibility of connecting them freely.

In the last decade several flexible modeling frameworks have been proposed;
while representing a step forward compared to classical conceptual models in
terms of flexibility, these frameworks still present problematics:


	the promised infinite flexibility is actually lost in the implementation,
with some frameworks that have a master structure with the possibility
selecting the elements and fluxes to use;


	the choice of the numerical model is sometimes fixed, not allowing user to
assess its impact on the results;


	the spatial discretization is usually pre-defined (e.g., some frameworks can
operate only in lumped configuration while others are designed to operate on
grids) not allowing the user to assess the impact of different
discretizations;


	the frameworks are usually difficult to modify or extend by users that are
not part of the core development team since these operations require a deep
understanding of the source code;


	the source code itself may not be available as open-source and distributed
only as executable;




These limitations, mainly due to implementation issues, limit the possibility
of fully exploiting the potential of flexible modelling frameworks and can be
addressed with a careful software implementation.




Spatial organization

Another important aspect to consider when designing a hydrological model is the
spatial resolution to utilize to represent the catchment. Most of the existing
models and frameworks can be classified in one or more of the following
categories:


	lumped configuration, when all the physical domain is considered uniform;


	grid-based configuration, when the physical domain is subdivided with a
(usually) uniform grid;


	semi-distributed configuration, when the physical domain is subdivided in
irregular areas that have the same hydrological response.




The first approach produces the simplest model, with a limited number of
parameters and usually fairly good predictions; the limitation of this choice
is that, if there are areas of the catchment behaving differently, the model
will not be able to represent this difference, with consequences on the values
of the calibrated parameters and on their interpretation.

The second approach produces models with high computational demand and a large
number of parameters; the catchment gets divided with a grid and the underlying
assumption, that each pixel has its own hydrological behavior, may be relaxed
aggregating different areas.

The third approach, which is in between the other two in terms of spatial
complexity and number of parameters, tries to find a subdivision of the
catchment that is driven by process understanding; this results is a
subdivision in irregular areas that are supposed to have the same hydrological
behavior; this approach enables the modeller to reflect his/her understanding
of the dominant processes at the catchment scale.




SuperflexPy

In order to overcome most of the problems illustrated above, we have developed
SuperflexPy, a new flexible framework for building conceptual hydrological
models with different levels of spatial complexity, from lumped to
semi-distributed.

SuperflexPy contains the functionalities to build all the common elements that
can be found in the conceptual models or in the flexible modeling frameworks
and to connect them, constructing spatially distributed configurations.

In order to do that, SuperflexPy is internally organized in four different
levels to satisfy different degrees of spatial complexity:


	elements;


	units;


	nodes;


	network.




The lower level is represented by the elements; they can be, for example,
reservoirs, lag functions, or connections and are designed to represent
specific processes affecting the hydrological cycle (e.g. soil dynamics).

The second level is represented by the units; a unit is a component that
connects together several elements creating the structure of a lumped
configuration.

The third level is represented by the nodes; a node contains several units that
operate in parallel. Each unit should represent the contribution of different
hydrological behaving areas of the node.

The fourth level is represented by the network; a network connects different
nodes, routing the fluxes from the upstream to the downstream ones. This
enables the representation of complex watersheds that are composed by several
subcatchments, creating a semi-distributed hydrological model.

Technical details on these components are provided in the Organization of SuperflexPy
page.
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Organization of SuperflexPy

Superflex is designed to operate at several levels of complexity, from a single
reservoir to a complex river network. To do so, all the components are designed
to operate alone or inside other components.

For this reason, all the components have a series of methods that are
implemented to enable the execution of some basic functionality (e.g.
parameters handling) at all the levels.

We will first describe the common aspects of all the components of the
framework and, then, go specific in describing each one of them.


Generalities


Common methods

All the components share the following common methods.


	Parameters and states: each component may have parameters or
states that are identified by a unique identifier. Each component of
SuperflexPy have implemented some methods that enable to set or get states
and parameters of the component and of the components that it contains:



	set_parameters: change the value of the parameters


	get_parameters:  get the current value of the parameters


	get_parameters_name: get the identifier of the parameters


	set_states: change the value of the states


	get_states: get the current value of the states


	get_states_name: get the identifier of the parameters


	reset_states: reset the states to their initialization value









	Time step: as commonly done in hydrological modeling, inputs and outputs
are assumed to have the same constant time step. In SuperflexPy, all the
components that require the definition of a time step (e.g. reservoirs that
are controlled  by a differential equation) contain the methods that enable
to set and get the time step.



	set_timestep: set the time step used in the model; all the
components at a higher level (e.g. units) have this method; when called,
it applies the change to all the elements contained in the component;


	get_timestep: returns the time step used in the model.









	Inputs and outputs: all the components have functionalities to handle the
inputs and to generate the outputs.



	set_input: set the input fluxes of the component;


	get_output: run the component (and all the components contained in
it) and return the output fluxes.














Usage of the identifier

Parameters and states in SuperflexPy are identified using a string. The string
can have an arbitrary length with the only requirement that it cannot contain
the character underscore _.

Every component of SuperflexPy (except for the network) must have a unique
identifier (that cannot contain the character _). When an element is
inserted into a unit or when the unit is inserted into the node, the identifier
of the component is prepended to the name of the parameter using the character
_ as separator.

If, for example, the element with identifier e1 has the parameter
par1, the name of the parameter becomes, at initialization,
e1_par1. When, then, the element is inserted into the unit u1
its name becomes u1_e1_par1, and so on.

In this way, every parameter and state of the model has its own unique
identifier that can be used to change its value from every component of
SuperflexPy.




Time variant parameters

In hydrological modelling, time variant parameters can be useful for
representing seasonal phenomena or stochasticity.

SuperflexPy is designed to operate both with constant and time variant
parameters. Parameters, in fact, can be either scalar float numbers or
numpy 1D arrays of the same length of the input fluxes; in the first case, the
parameter will be interpreted as time constant while, in the second case, the
parameter will be considered as time variant and have a specific value for each
time step.




Time step and length of the simulation

As common practice in hydrological modeling, SuperflexPy uses a single uniform
time step. This means that all the input time series of fluxes must have the
same time resolution that will be, then, used to generate the outputs.

It has been decided to not have a parameter of the model fixing the length of
the simulation (i.e. the number of time steps that needs to be run); this will
be inferred at runtime from the length of the input fluxes that, for this
reason, must all have the same length.




Inputs and outputs formats

Inputs and outputs fluxes of SuperflexPy’s components are represented using 1D
numpy arrays.

For the inputs, regardless the number of fluxes, the method set_input
takes a list of numpy arrays (one array per flux); the order of the arrays
inside the list must follow the indications of the documentation of the method.
All the input fluxes must have the same dimension since, as explained in the
section Time step and length of the simulation, the length of the simulation is defined by this
dimension.

The output fluxes are also returned as a list of numpy 1D arrays from the
get_output method.

Only for the elements, whenever the number of upstream or downstream elements
is different from one (e.g. Connections), the set_input or the
get_output methods will use bidimensional lists of numpy arrays: this
solution is used to route fluxes from and to multiple elements.






Elements

Elements represent the basic level of the SuperflexPy’s architecture; they can
operate either alone or, connected together, as part of a unit.

Depending on the type, the elements can have parameters or states, can handle
multiple fluxes as input or as output, can be designed to operate with one or
more elements upstream or downstream, can be controlled by differential
equations, or can be designed to operate a convolution operation on the
incoming fluxes.

The framework provides a series of basic elements that can be extended by the
user to satisfy all these possible modeling needs.


	BaseElement: element without states and parameters;


	StateElement: element with states but without parameters;


	ParameterizedElement: element with parameters but without states;


	StateParameterizedElement: element with states and parameters.




All the possible elements can be generated starting from the four general
elements proposed; to facilitate the extension of the framework, we offer also
some specific elements of common use in hydrological modeling; those are
reservoirs, lag functions, and connections.


Reservoirs

A reservoir is an element that receives an input and transforms it, based on
its internal state and on some parameters. It is usually governed by the
differential equation


\[\frac{\textrm{d}S}{\textrm{d}t}=\mathbf{I}(\mathbf{\theta}, t)-\mathbf{O}(S, \mathbf{\theta}, t)\]

Where \(S\) is the internal state of the reservoir, \(\mathbf{I}\)
represents the incoming fluxes (usually independent from the state),
\(\mathbf{O}\) represents the outgoing fluxes, and \(\mathbf{\theta}\)
is a vector representing the parameters that control the behavior of the
reservoir.

The framework provides the class ODEsElement that contains all the logic
that is needed to solve an element that is controlled by a differential
equation. The user needs only to define the equations needed to calculate the
fluxes.

The solution of the differential equation is done using a numerical
approximation; the choice of the numerical approximation (e.g. implicit Euler)
is left to the user, when initializing the reservoir.

SuperflexPy provides already some “numerical approximators” that can be used to
create a numerical approximation of the differential equation (e.g. implicit or
explicit Euler). These approximators are designed to operate coupled with a
“root finder” that finds the solution (root) of the numerical approximation of
the differential equation. The user can either use the numerical routines
provided by the framework or implement the interface necessary to use an
external solver (e.g. from scipy), which may be needed when the numerical
problem becomes more complex (e.g. coupled differential equations). For more
information about the numerical solver refer to the page
Numerical routines for solving ODEs.




Lag functions

A lag function is an element that applies a delay to the incoming faxes;
mathematically, the lag function applies a convolution to the incoming fluxes.
In practice, the result is usually achieved distributing the fluxes at each
time step in the following ones, according to weight array.

SuperflexPy already provides class, called LagElement, that implements
all the methods needed to represent a lag function, leaving to user only the
duty of defining weight array that has to be used.




Connections

Connection elements are needed to link together different elements, when
building a unit. If an element has several elements downstream, for example,
its fluxes need to be split using a Splitter; on the other hand, when
the outflow of several elements is collected by a single one, this operation has
to be done through a Junction element.

SuperflexPy provides several elements to connect and to fill the gaps in the
structure; these elements are designed to operate with an arbitrarily large
number of fluxes and upstream or downstream elements.


Splitter

[image: _images/splitter.png]
A Splitter is an element that takes the outputs of a single upstream
element and distributes them to feed several downstream elements.

The behavior of a splitter in SuperflexPy is controlled by two matrices:
direction and weight. The first controls into which downstream elements the
incoming fluxes are directed; the second defines the proportion of each flux
that goes to the downstream elements.

Looking at the picture, the element E1 has 3 incoming fluxes: in order, red,
black, and blue. The red flux is taken entirely by the element E3, the black
flux is taken entirely by the element E2, and the blue flux is split at 30% to
E2 and 70% to E3.

That direction matrix is a 2D matrix that has as many columns as the number of
fluxes and as many rows as the number of downstream elements. Each element of
the matrix contains the index identifying the incoming flux that is transferred
in that position to the downstream element. The blue flux, for example, is the
third (index 2) incoming flux and gets distributed as second input (index 1)
to both downstream elements; the direction matrix will contain, therefore,
the number 2 in position (0,1) and (1,1), with the first number (row) that
indicates the downstream element and the second (column) that indicates the
flux position. When a flux is not sent to a downstream element (e.g red flux
to E2) it will be identified as None in the direction matrix.

The direction matrix for the splitter in the picture is here reported:


\[\begin{split}D=
\begin{pmatrix}
1 & 2 & \textrm{None}\\
0 & 2 & \textrm{None}
\end{pmatrix}\end{split}\]

The weight matrix has the same dimensionality of the direction matrix. Each
element of this matrix represents the proportion of the respective incoming flux
that gets distributed to the specific downstream element. Looking at the blue
flux, it will occupy the third column in the weight matrix (because it is the
third incoming flux) and have value 0.3 in the first row (first downstream
element) and 0.7 in the second row (second downstream element).

The weight matrix for the splitter in the picture is here reported:


\[\begin{split}W=
\begin{pmatrix}
0 & 1.0 & 0.3\\
1.0 & 0 & 0.7
\end{pmatrix}\end{split}\]

Note that, as a quick check, the sum of each column of the weight matrix should
be 1 otherwise a portion of the flux is lost.




Junction

[image: _images/junction.png]
A Junction is an element that takes the outputs of several upstream
elements and converges them into a single downstream element.

The behavior of a junction in SuperflexPy is controlled by direction matrix that
defines how the incoming fluxes have to be aggregated (summed) to feed the
downstream element.

Looking at the picture, the element E3 takes three fluxes as input: in order,
red, black, and blue. The red flux comes from both upstream elements; the black
flux comes only from E1; the blue flux comes only from E2.

The direction matrix has as many rows as the number of fluxes and as many
columns as number of upstream elements. Each entry of the matrix indicates the
position of the flux of the upstream elements that compose a specific flux of
the downstream element. The blue flux, that is the third incoming flux to E3,
for example, is represented by the third row of the matrix with the couple
(None, 0) since the flux is not present in E1 and it is the first flux of E2.

The direction matrix for the junction in the picture is here reported:


\[\begin{split}D=
\begin{pmatrix}
0 & 1\\
1 & \textrm{None}\\
\textrm{None} & 0
\end{pmatrix}\end{split}\]




Linker

[image: _images/linker.png]
A Linker is an element that can be used to connect multiple elements
upstream to multiple elements downstream.

Its usefulness is due to the fact that in SuperflexPy the structure of the model
is defined as an ordered list of elements. This means that (refer to the
Unit section for further details) if we want to connect the first
element of a layer with the second element of the following layer (e.g., E1
with E4, in the example above) we have to put an additional layer in between
that contains a linker that direct the fluxes to the proper downstream element.




Transparent
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A transparent element is an element that does nothing: it returns, as output,
the same fluxes that it takes as input. It is needed to fill gaps in the
structure defined in the unit.








Unit

[image: _images/unit.png]
The unit represents the second level of components in SuperflexPy and it is used
to connect different elements, moving the fluxes from upstream to downstream.
The unit can be used either alone in a lumped configuration or, as part of a
node, to create a semi-distributed model.

The elements are copied into the unit: this means that an element that belongs
to a unit is completely independent from the original element and from any
other copy of the same element in another units. Changes to the state or to the
parameters of an element inside a unit will, therefore, not reflect outside
the unit.

As shown in the picture, the elements are organized as a succession of layers,
from left (upstream) to right (downstream).

The first and the last layer must contain only a single element, since the
inputs of the unit are transferred to the first element and the outputs of the
unit are taken from the last element.

The order of the elements inside each layer defines how they are connected:
the first element of a layer (e.g. E2 in the picture) will transfer its outputs
to the first element of the downstream layer (e.g. E4); the second element of
a layer (e.g. E3) will transfer its outputs to the second element of the
downstream layer (e.g. T), and so on.

When the output of an element is split between more downstream elements
(e.g. E1) the operation has to be done putting an additional layer in between
that contains a splitter: in the example, the splitter S has two downstream
elements (E2 and E3); the framework will route the first group of outputs of
the splitter to E2 and the second to E3.

Whenever there is a gap in the structure, a transparent element should be used
to fill the gap. In the example, the output of E3 have to be aggregated with
the output of E4; since the elements belong to different layers, this can be
achieved putting a transparent element in the same layer of E4.

Since the unit must have a single element in the last layer, the outputs of E4
and T must be collected using a Junction.

Each element is aware of the number of upstream and downstream elements that it
must have (for example, a reservoir must have one element upstream and
downstream, a splitter must have one element upstream and can have several
elements downstream, and so on). The structure of a unit is valid only if the
number downstream elements that a layer must have is equal to the number of
upstream elements that the following must have. In the example, layer 1 must
have two downstream elements (information contained in the splitter) that is
consistent with the configuration of layer 2.

To get more familiar with the definition of the model structure in SuperflexPy
and to understand how to reproduce the structures of popular models,
refer to the page Application: implementation of existing conceptual models.




Node

The node represents the third level of components in SuperflexPy and it is used
to aggregate different units, summing their contribution in the creation of the
total outflow. The node can be run either alone or as part of a bigger network.

When a unit is inserted into a node, the default behavior is that the states of
the elements belonging to the unit get copied while the parameters no. This
means that, if same unit belongs to two different nodes (A and B), changes to
the values of the parameters of the elements in node A will reflect also in
node B while changes to the values of the states of the elements in node A will
not reflect in node B. This default behavior can be changed, making also the
parameters independent (set shared_parameters=False at initialization).

The choice of sharing the parameters between elements of the same unit that
belong to different nodes is motivated by the fact that the unit is supposed to
represent areas that have the same hydrological response. The idea is that the
hydrological response is controlled by the parameters and that, therefore,
elements of the same unit belonging to different nodes should have the same
parameter values. The states, on the other hand, should be independent because
different nodes may get different inputs and, therefore, the evolution of
their states should be independent.

Refer to the page Multiple units configuration for details on how to incorporate
the units inside the node.


Routing

The most common use of a node is to represent catchment, which can be part of a
larger system, composing a network.

For this reason, the node has the possibility of defining routing functions
that delay the fluxes; two types of routing are possible:


	internal routing;


	external routing.




The first is designed to simulate the delay that the fluxes get when they are
collected from the units to the river network; the former is meant to represent
the delay that derives from the routing of the fluxes inside the river network,
between the outlets of the present node and of the downstream one.

In the default implementation of the node in SuperflexPy, the two routing
functions simply return their input (i.e. no delay is applied); the user can
change this behavior creating a customized node that implements these
functions.

An example on how to do that can be found in the page Adding the routing to a node






Network

The network represents the fourth level of components in SuperflexPy and it is
used to connect together several nodes, routing the fluxes from upstream to
downstream.

The topology of the network is defined assigning to each node the information
about its downstream node. The network will then solve the nodes, starting from
the most upstream ones and then moving downstream, solving the remaining nodes
and routing the fluxes towards the output of the network.

The network is the only component of SuperflexPy that does not have the
set_input method since the input, which is node-specific, has to be
assigned to each node belonging to the network.

When a node is inserted in the network it is not copied, meaning that any
change the node (e.g. setting different inputs) outside the network reflects also
inside.

To respond to the practical needs of the modeler, the output of the network is
not only the output of the most downstream node but a dictionary that contains
the output of all the nodes of the network.
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Numerical routines for solving ODEs

Reservoirs are among the most common elements in conceptual hyrdological
models. While their dynamic changes, reservoirs are still controlled by one (or
more) ordinary differential equation (ODE) of the form


\[\frac{\textrm{d}S}{\textrm{d}t}=\mathbf{I}(\mathbf{\theta}, t)-\mathbf{O}(S, \mathbf{\theta}, t)\]

The analytical solution of such differential equation is almost always
impossible to obtain and, therefore, a numerical approximation has to be
constructed and solved.

In most of the cases, when a robust numerical approximation is used (e.g.
Implicit Euler), the solution of the numerical approximation (i.e. finding a
value of the state \(S\) that solves the algebraic equation) requires an
iterative procedure, since an algebraic solution cannot be defined.

The solution of the ODE, therefore, can be seen as a two-steps approach:


	Find a numerical approximation of the ODE


	Solve such numerical approximation




This can be done in SuperflexPy using two components:
NumericalApproximator and RootFinder. The first uses the fluxes
from the reservoir element to construct a numerical approximation of the ODE,
the second finds, numerically, the root of such approximation.

SuperflexPy provides already two numerical approximators (implicit and explicit
Euler) and a root finder (which uses the Pegasus method). Other algorithms can
be used extending the classes NumericalApproximator and
RootFinder.


Numerical approximator

The implementation of a customized numerical approximator can be done extending
the class NumericalApproximator and implementing two methods:
_get_fluxes and _differential_equation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class CustomNumericalApproximator(NumericalApproximator):

    @staticmethod
    def _get_fluxes(fluxes, S, S0, args):

        # Some code here

        return fluxes

    @staticmethod
    def _differential_equation(fluxes, S, S0, dt, args, ind):

        # Some code here

        return [dif_eq, min_val, max_val]







where fluxes is a list of functions used to calculate the fluxes,
S is an array of states that solve the ODE for the different time
steps, S0 is the initial state, dt is the time step,
args is a list of additional arguments used by the functions in
fluxes, and ind is the index of the input arrays to use.

The first method (_get_fluxes) is responsible for calculating the fluxes
after the ODE has been solved and operates with a vector of states. The second
method (_differential_equation) calculates the approximation of the ODE
and it is designed to be interfaced to the root finder, returning the value of
the differential equation and the minimum and maximum boundary for the search of
the root.

To understand better how these methods work, please have a look at the
implementation of ImplicitEuler and ExplicitEuler.




Root finder

The implementation of a root finder can be done extending the class
RootFinder implementing the method solve.

	1
2
3
4
5
6
7

	class CustomRootFinder(RootFinder):

    def solve(self, dif_eq, fluxes, S0, dt, ind, args):

        # Some code here

        return root







where dif_eq is a function that calculates the value of the
approximated ODE, fluxes is a list of functions used to calculate
the fluxes, S0 is the initial state, dt is the time step,
args is a list of additional arguments used by the functions in
fluxes, and ind is the index of the input arrays to use.

The method solve is responsible for finding the numerical solution of
the approximated ODE.

To understand better how this method works, please have a look at the
implementation of Pegasus.




Computational efficiency with Numpy and Numba

Conceptual hydrological models are often associated to computationally demanding
tasks, such as parameter calibration and uncertainty quantification, which
require multiple model runs (even millions). Computational efficiency is
therefore an important requirement of a SuperflexPy.

Computational efficiency is not the greatest strength of pure Python but
libraries like Numpy and Numba can help in pushing the performance close to
Fortran or C.

Numpy provides highly efficient arrays that can be transformed with C-time
performance, as long as vector operations (i.e. elementwise operations between
arrays) are run; Numba provides a “just-in-time compiler” that can be applied to
a normal Python method to compile, at runtime, its content to machine code
that interacts efficiently with NumPy arrays. This operation is extremely
effective when solving ODEs where the method loops through a vector to perform
some element-wise operations.

For this reason we provide a Numba-optimized version of the
NumericalApproximator and of the RootFinder that enables to
solve ODEs efficiently.

The figure shows the results of a benchmark that compares the execution times
of the pure Python vs. the Numba implementation, in relation to the length of
the time series (panel a) and to the number of model runs (panel b). The plots
clearly show the tradeoff between compile time (which is zero for Python and
around 2 seconds for Numba) and run time, where Numba is 30 times faster than
Python. This means that the choice of the implementation to use, which can be
done simply using a different NumericalApproximator implementation, may
depend on the application: a single run of the HYMOD model, with the
implicit Euler numerical solver and a time series of 1000 time steps takes 0.11
seconds with Python and 1.85 with Numba while, if the same model is run 100
times (for a calibration, for example) the Numba version takes 2.35 seconds
while the Python version 11.75 seconds.
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Quick demo

In this demo we will build a simple semi-distributed conceptual model with
SuperflexPy, showing how the elements are initialized, configured, and run and
how to use the model at any level of complexity, from single element to
multiple nodes.


Importing SuperflexPy

Assuming that SuperflexPy has already been installed (refer to the
Installation guide), the elements needed to build the model must
be imported from the SuperflexPy package. For this demo, this is done with the
following lines

	1
2
3
4
5
6
7

	from superflexpy.implementation.elements.hbv import FastReservoir
from superflexpy.implementation.elements.gr4j import UnitHydrograph1
from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython
from superflexpy.framework.unit import Unit
from superflexpy.framework.node import Node
from superflexpy.framework.network import Network







Lines 1-2 import the two element that we will use (a reservoir and a lag
function), lines 3-4 import the numerical solver used to solve the
differential equation of the reservoir, lines 5-7 import the components of
SuperflexPy needed to make the model spatially distributed.

A complete list of the elements already implemented in SuperflexPy, including
the equations used and the import path is available at the Elements list
page. If the desired element is not available it can be built following the
instruction given in the Expand SuperflexPy: build customized elements page.




Single-element configuration

[image: _images/SingleReservoir_scheme.png]
The single-element model is composed by a single reservoir that is governed by
the following differential equation


\[\frac{\textrm{d}S}{\textrm{d}t}=P-Q\]

where \(S\) is the state of the reservoir, \(P\) is the precipitation
input, and \(Q\) is the outflow, defined by the equation:


\[Q = kS^\alpha\]

where \(k\) and \(\alpha\) are parameters of the element. It can be
noticed that, for simplicity, evapotranspiration is not considered in this
demo.

The first step that needs to be done is initializing the numerical approximator,
needed to construct the differential equation to solve, and the root finder
used to find the value of the state that solves the approximation of the
differential equation. In this case, we choose to use the Python
implementation of implicit Euler (numerical approximator) and of the Pegasus
algorithm (root finder). This can be done with the following code, where the
default settings of the solver are used (refer to the solver docstring).

	1
2
3

	solver_python = PegasusPython()

approximator = ImplicitEulerPython(root_finder=solver_python)







After that, the element can be initialized

	1
2
3
4
5
6

	fast_reservoir = FastReservoir(
    parameters={'k': 0.01, 'alpha': 2.0},
    states={'S0': 10.0},
    approximation=approximator,
    id='FR'
)







During initialization, parameters (line 2) and initial state (line 3) are
defined, together with the numerical approximator and the identifier (the
identifier must be unique and cannot contain the character _).

After initialization, the time step used to solve the differential equation and
the inputs of the element must be defined.

	1
2

	fast_reservoir.set_timestep(1.0)
fast_reservoir.set_input([precipitation])







Precipitation is a numpy array containing the precipitation time series. Note
that the length of the simulation (i.e., number of time steps to run the model)
cannot be defined and it is automatically set equal to the length of the input
arrays.

At this point, the element can be run, calling the method get_output

	1

	output = fast_reservoir.get_output()[0]







The method will run the element for all the time steps solving the differential
equation and return a list containing all the output arrays of the element (in
this specific case there is only one output, \(Q\)).

After running, the state of the reservoir (for all the time steps) is saved in
the state_array attribute of the element and can be inspected

	1

	reservoir_state = fast_reservoir.state_array[:, 0]







the state_array is a 2D array with as many row (first dimension) as the number
of time steps and as many columns (second dimension) as the number of states.
The order of the states is defined in the documentation of the element.

The plot shows the output of the simulation.

[image: _images/SingleReservoir.png]
Note that the get_output method also sets the element states to their value at
the final time step (in this case 8.98). Therefore, if the method is called
again, it will use this value as initial state instead to the one defined at
initialization. The states of the model can be reset calling the
reset_states method.

	1

	fast_reservoir.reset_states()










Lumped model structure

[image: _images/SingleUnit_scheme.png]
We now move from a single-element configuration to multiple elements connected.
For simplicity, we limit the complexity at two elements; more complex
configurations can be found in the Application: implementation of existing conceptual models page.

The structure is composed by a reservoir, which output is taken, as input, by
a lag function. The lag function convolutes the incoming flux using the
function


\[Q_{\textrm{out}}=Q_{\textrm{in}} \left(\frac{t}{t_{\textrm{lag}}}\right)^
{\frac{5}{2}} \qquad \textrm{for }t<t_{\textrm{lag}}\]

and its behavior is controlled by the parameter \(t_{\textrm{lag}}\).

The first step consists in initializing the two elements that compose the
structure

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	fast_reservoir = FastReservoir(
    parameters={'k': 0.01, 'alpha': 2.0},
    states={'S0': 10.0},
    approximation=approximator,
    id='FR'
)

lag_function = UnitHydrograph1(
    parameters={'lag-time': 2.3},
    states={'lag': None},
    id='lag-fun'
)







Note that the initial state of the lag function has been set to None
(line 10); in this case the element will initialize the state to an arrays of
zeros of the proper length, depending on the value of \(t_{\textrm{lag}}\)
(in this specific case, 3).

We can, then, initialize the unit that connect the elements, defining the model
structure

	1
2
3
4

	unit_1 = Unit(
    layers=[[fast_reservoir], [lag_function]],
    id='unit-1'
)







Line 2 defines the structure; it is a 2D list where the inner level sets the
elements belonging to each layer an the outer level lists the layers. Note that
the order of the elements in the list is of primary importance. Refer to
Unit for further details.

After initialization, time step and inputs must be defined

	1
2

	unit_1.set_timestep(1.0)
unit_1.set_input([precipitation])







The unit sets the time step of all the elements that contains to the provided
value and transfers the inputs to the first element (the reservoir, in this
example).

After that, the unit can be run

	1

	output = unit_1.get_output()[0]







The unit will call the get_output method of all its elements, from
upstream to downstream, set the inputs of the downstream elements to the output
of their respective upstream elements, and return the output of the last
element.

The outputs and the states of the internal elements can be inspected after
running the model

	1
2

	fr_state = unit_1.get_internal(id='FR', attribute='state_array')[:, 0]
fr_output = unit_1.call_internal(id='FR', method='get_output', solve=False)[0]







Note that (line 2) we need to pass to the function get_output of the
reservoir the argument solve=False in order to avoid to re-run the
element.

The plot shows the output of the simulation.

[image: _images/SingleUnit.png]
The elements of the unit can be re-set to their initial state

	1

	unit_1.reset_states()










Multiple units configuration

[image: _images/SingleNode_scheme.png]
A catchment (node) can be composed by different areas that react differently to
the same precipitation input. We may have 70% of the catchment that can be
represented with the structure described in the previous section and 30% that
can be described simply by a single reservoir.

This behavior can be simulated with SuperflexPy creating a node that contains
multiple units.

The first step consists in initializing the two units and the elements
composing them, as done in the previous sections.

	 1
 2
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	fast_reservoir = FastReservoir(
    parameters={'k': 0.01, 'alpha': 2.0},
    states={'S0': 10.0},
    approximation=approximator,
    id='FR'
)

lag_function = UnitHydrograph1(
    parameters={'lag-time': 2.3},
    states={'lag': None},
    id='lag-fun'
)

unit_1 = Unit(
    layers=[[fast_reservoir], [lag_function]],
    id='unit-1'
)

unit_2 = Unit(
    layers=[[fast_reservoir]],
    id='unit-2'
)







Note that, once the elements are added to a unit, they become independent,
meaning that any change to the reservoir contained in unit-1 does not
affect the reservoir in unit-2.

At this point, the node can be initialized, putting together the two units

	1
2
3
4
5
6

	node_1 = Node(
    units=[unit_1, unit_2],
    weights=[0.7, 0.3],
    area=10.0,
    id='node-1'
)







Line 2 contains the list of the units that belong to the node, line 3 their
weight (i.e. part of the node outflow influenced by this unit). The
representative area of the node (line 4) will be used, in case, by the network.

After that, time step and inputs must be defined

	1
2

	node_1.set_timestep(1.0)
node_1.set_input([precipitation])







the same time step will be set to the elements composing all the units of the
node, the inputs will be passed to all the units of the node.

We can now run the node and collect its output

	1

	output = node_1.get_output()[0]







The node will call the get_output method of all the units and aggregate their
outputs using the weights. In the case of multiple fluxes (e.g., water and
contaminants) their order must be the same in all the units.

The outputs of the single units, as well as the states and fluxes of the
elements composing them, can be inspected

	1
2

	output_unit_1 = node_1.call_internal(id='unit-1', method='get_output', solve=False)[0]
output_unit_2 = node_1.call_internal(id='unit-2', method='get_output', solve=False)[0]







The plot shows the output of the simulation.

[image: _images/SingleNode.png]
All the elements composing the node can be re-set to their initial state

	1

	node_1.reset_states()










Multiple nodes in a network

[image: _images/Network_scheme.png]
A watershed can be composed by several catchments connected in a network that
have different inputs but share areas with the same hydrological behavior. This
can be simulated with SuperflexPy creating a network that contains multiple
nodes.

The first step for creating a network is initializing the nodes composing it.
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	fast_reservoir = FastReservoir(
    parameters={'k': 0.01, 'alpha': 2.0},
    states={'S0': 10.0},
    approximation=approximator,
    id='FR'
)

lag_function = UnitHydrograph1(
    parameters={'lag-time': 2.3},
    states={'lag': None},
    id='lag-fun'
)

unit_1 = Unit(
    layers=[[fast_reservoir], [lag_function]],
    id='unit-1'
)

unit_2 = Unit(
    layers=[[fast_reservoir]],
    id='unit-2'
)

node_1 = Node(
    units=[unit_1, unit_2],
    weights=[0.7, 0.3],
    area=10.0,
    id='node-1'
)

node_2 = Node(
    units=[unit_1, unit_2],
    weights=[0.3, 0.7],
    area=5.0,
    id='node-2'
)

node_3 = Node(
    units=[unit_2],
    weights=[1.0],
    area=3.0,
    id='node-3'
)







node-1 and node-2 contains both the units but with different
proportions; node-3 contains only unit-2. When units are added
to a catchment the states of the elements belonging to them remain independent
while the parameters stay linked, meaning that the change of a parameter in
unit-1 in node-1 is applied also in unit-1 in
node-2. Different behavior can be achieve setting the parameter
shared_parameters equal to False when initializing the nodes.

At this point, the network can be initialized

	1
2
3
4
5
6
7
8

	net = Network(
    nodes=[node_1, node_2, node_3],
    topography={
        'node-1': 'node-3',
        'node-2': 'node-3',
        'node-3': None
    }
)







Line 2 lists the nodes belonging to the network, lines 4-6 define the topology
of the network; this is done with a dictionary that has the identifier of the
nodes as key and the identifier of the single downstream node as value; the
most downstream node has value None.

The inputs are catchment-specific and must be provided to each catchment, as
done in the single-node case.

	1
2
3

	node_1.set_input([precipitation])
node_2.set_input([precipitation * 0.5])
node_3.set_input([precipitation + 1.0])







The time step is set by the network to the same value for all the nodes.

	1

	net.set_timestep(1.0)







We can now run the network and get the output values

	1

	output = net.get_output()







The network runs the nodes from upstream to downstream, collects their output,
and route them to the outlet. The output of the network is a dictionary that
has the identifier of the nodes, as key, and the list of output fluxes, as
value. It is also possible to inspect the internals of the nodes, as done with
the single-node case.

	1
2
3

	output_unit_1_node_1 = net.call_internal(id='node-1_unit-1',
                                         method='get_output',
                                         solve=False)[0]







The plot shows the results of the simulation.

[image: _images/Network.png]
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Elements list

This page contains all the elements implemented as part of SuperflexPy. The
elements are divided in three categories


	Reservoir


	Lag functions


	Connectors




We will now list all the elements in alphabetical order.


Reservoirs


Fast reservoir (HBV)

from superflexpy.implementation.elements.hbv import FastReservoir






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - Q \\
& Q=kS^{\alpha}\end{split}\]




Inputs required


	Precipitation







Main outputs


	Total outflow









Interception filter (GR4J)

from superflexpy.implementation.elements.gr4j import InterceptionFilter






Governing equations


\[\begin{split}& \textrm{if } P^{\textrm{in}} > E^{\textrm{in}}_{\textrm{POT}}: \\
& \quad P^{\textrm{out}} = P^{\textrm{in}} - E^{\textrm{in}}_{\textrm{POT}} \\
& \quad E^{\textrm{out}}_{\textrm{POT}} = 0 \\ \\
& \textrm{if } P^{\textrm{in}} < E^{\textrm{in}}_{\textrm{POT}}: \\
& \quad P^{\textrm{out}} = 0 \\
& \quad E^{\textrm{out}}_{\textrm{POT}} = E^{\textrm{in}}_{\textrm{POT}} - P^{\textrm{in}}\end{split}\]




Inputs required


	Potential evapotranspiration


	Precipitation







Main outputs


	Net potential evapotranspiration


	Net precipitation









Linear reservoir (Hymod)

from superflexpy.implementation.elements.hymod import LinearReservoir






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - Q \\
& Q=kS\end{split}\]




Inputs required


	Precipitation







Main outputs


	Total outflow









Production store (GR4J)

from superflexpy.implementation.elements.gr4j import ProductionStore






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P_{\textrm{s}}-E_{\textrm{act}}-Perc \\
& P_{\textrm{s}}=P\left(1-\left(\frac{S}{x_1}\right)^\alpha\right) \\
& E_{\textrm{act}}=E_{\textrm{pot}}\left(2\frac{S}{x_1}-\left(\frac{S}{x_1}\right)^\alpha\right) \\
& Perc = \frac{x^{1-\beta}}{(\beta-1)\textrm{d}t}\nu^{\beta-1}S^{\beta} \\
& P_{\textrm{r}}=P - P_{\textrm{s}} + Perc\end{split}\]




Inputs required


	Potential evapotranspiration


	Precipitation







Main outputs


	Total outflow (\(P_{\textrm{r}}\))







Secondary outputs


	Actual evapotranspiration (\(E_{\textrm{act}}\))









Routing store (GR4J)

from superflexpy.implementation.elements.gr4j import RoutingStore






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P-Q-F \\
& Q=\frac{x_3^{1-\gamma}}{(\gamma-1)\textrm{d}t}S^{\gamma} \\
& F = \frac{x_2}{x_3^{\omega}}S^{\omega}\end{split}\]




Inputs required


	Precipitation







Main outputs


	Outflow (\(Q\))


	Loss term (\(F\))









Snow reservoir (Thur model HESS)

from superflexpy.implementation.elements.thur_model_hess import SnowReservoir






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=Sn-M \\
& Sn=P\quad\textrm{if } T\leq T_0;\quad\textrm{else } 0 \\
& M = M_{\textrm{pot}}\left(1-\exp\left(-\frac{S}{m}\right)\right) \\
& M_{\textrm{pot}}=kT\quad\textrm{if } T\geq T_0;\quad\textrm{else } 0 \\\end{split}\]




Inputs required


	Precipitation (total, the separation between snow and rain is done
internally)


	Temperature







Main outputs


	Melt + rainfall input









Unsaturated reservoir (HBV)

from superflexpy.implementation.elements.hbv import UnsaturatedReservoir






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - E_{\textrm{act}} - Q \\
& E_{\textrm{act}}=C_{\textrm{e}}E_{\textrm{pot}}\left(\frac{\left(\frac{S}{S_{\textrm{max}}}\right)(1+m)}{\frac{S}{S_{\textrm{max}}}+m}\right) \\
& Q=P\left(\frac{S}{S_{\textrm{max}}}\right)^{\beta}\end{split}\]




Inputs required


	Precipitation


	Potential evapotranspiration







Main outputs


	Total outflow







Secondary outputs


	Actual evapotranspiration









Upper zone (Hymod)

from superflexpy.implementation.elements.hymod import UpperZone






Governing equations


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}{t}}=P - E_{\textrm{act}} - Q \\
& E_{\textrm{act}}=E_{\textrm{pot}}\left(\frac{\left(\frac{S}{S_{\textrm{max}}}\right)(1+m)}{\frac{S}{S_{\textrm{max}}}+m}\right) \\
& Q=P\left(1-\left(1-\frac{S}{S_{\textrm{max}}}\right)^{\beta}\right)\end{split}\]




Inputs required


	Precipitation


	Potential evapotranspiration







Main outputs


	Total outflow







Secondary outputs


	Actual evapotranspiration











Lag functions

All the lag functions implemented in SuperflexPy are designed to take an
arbitrary number of input fluxes and to apply a transformation to it based on
a weight array that defines the shape of the lag function. It is only this that
differentiate different lag functions.


Half triangular lag (Thur model HESS)

from superflexpy.implementation.elements.thur_model_hess import HalfTriangularLag






Equation used for the lag

The area of the lag is calculated with the following expression


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \left(\frac{t}{t_{\textrm{lag}}}\right)^2 & \quad \textrm{for } 0< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as the difference between the value of
\(A_{\textrm{lag}}\) at two adjacent points.


\[w(t_{\textrm{j}}) = A_{\textrm{lag}}(t_{\textrm{j}}) - A_{\textrm{lag}}(t_{\textrm{j-1}})\]






Unit hydrograph 1 (GR4J)

from superflexpy.implementation.elements.gr4j import UnitHydrograph1






Equation used for the lag

The area of the lag is calculated with the following expression


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \left(\frac{t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } 0< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as the difference between the value of
\(A_{\textrm{lag}}\) at two adjacent points.


\[w(t_{\textrm{j}}) = A_{\textrm{lag}}(t_{\textrm{j}}) - A_{\textrm{lag}}(t_{\textrm{j-1}})\]






Unit hydrograph 2 (GR4J)

from superflexpy.implementation.elements.gr4j import UnitHydrograph2






Equation used for the lag

The area of the lag is calculated with the following expression


\[\begin{split}&A_{\textrm{lag}}(t) = 0 & \quad \textrm{for } t \leq 0\\
&A_{\textrm{lag}}(t) = \frac{1}{2}\left(\frac{2t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } 0< t \leq \frac{t_{\textrm{lag}}}{2}\\
&A_{\textrm{lag}}(t) = 1 - \frac{1}{2}\left(2-\frac{2t}{t_{\textrm{lag}}}\right)^\frac{5}{2} & \quad \textrm{for } \frac{t_{\textrm{lag}}}{2}< t \leq t_{\textrm{lag}}\\
&A_{\textrm{lag}}(t) = 1 & \quad \textrm{for } t > t_{\textrm{lag}}\end{split}\]

The weight array is then calculated as the difference between the value of
\(A_{\textrm{lag}}\) at two adjacent points.


\[w(t_{\textrm{j}}) = A_{\textrm{lag}}(t_{\textrm{j}}) - A_{\textrm{lag}}(t_{\textrm{j-1}})\]








Connectors

SuperflexPy implements, by default four different connectors:


	splitter


	junction


	linker


	transparent element




All of them are designed to operate with an infinite number of fluxes and,
when possible, with infinite upstream or downstream elements.

Apart from those, there are also some connectors that have been implemented as
part of a specific configuration, to achieve a particular design.
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Note

If you build your own component using SuperflexPy, you should also
share your implementation with the community and contribute to the
Elements list page to make other users aware of your
implementation.




Expand SuperflexPy: build customized elements

In this page we will illustrate how to create customized elements using the
SuperflexPy framework.

The examples include three elements:


	Linear reservoir


	Half-triangular lag function


	Parameterized splitter




The elements presented here are as simple as possible, since the focus is in
explaining how the framework works, rather than providing code to use in a
practical application. To understand deeper how to exploit all the
functionalities of SuperflexPy, please have a look at the elements that have
been already implemented (importing path
superflexpy.implementation.elements).

In this page we report, for brevity, only the code, without docstring. The
complete code used to generate this page is available at the path
doc/source/build_element_code.py.


Linear reservoir

The linear reservoir is one of the simplest reservoir that can be built. The
idea is that the output flux is a linear function of the state of the
reservoir.

The element is controlled by the following differential equation


\[\frac{\textrm{d}S}{\textrm{d}t}=P-Q\]

with


\[Q=kS\]

The solution of the differential equation can be approximated using a numerical
method with the equation that, in the general case, becomes:


\[\frac{S_{t+1} - S_{t}}{\Delta t}=P - Q(S)\]

Several numerical methods exist to approximate the solution of the differential
equation and, usually, they differ for the state used to evaluate the fluxes:
implicit Euler, for example, uses the state at the end of the time step
(\(S_{t+1}\))


\[\frac{S_{t+1} - S_{t}}{\Delta t}=P - kS_{t+1}\]

explicit Euler uses the state at the beginning of the time step (\(S_t\))


\[\frac{S_{t+1} - S_{t}}{\Delta t}=P - kS_{t}\]

and so on for other methods.

Note that, even if for this simple case the differential equation can be solved
analytically and the solution of the numerical approximation can be found
without iteration, we will use anyway the numerical solver offered by
SuperflexPy to illustrate how to proceed in a more general case where such
option is not available.

The framework provides the class ODEsElement that has most of the
methods required to solve the element. The class implementing the element will
inherit from this and implement only a few methods.

	1
2
3
4

	import numba as nb
from superflexpy.framework.element import ODEsElement

class LinearReservoir(ODEsElement):







The first method to implement is the class initializer
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	    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture

        if approximation.architecture == 'numba':
            self._fluxes = [self._fluxes_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._fluxes_function_python]
        else:
            message = '{}The architecture ({}) of the approximation is not correct'.format(self._error_message,
                                                                                           approximation.architecture)
            raise ValueError(message)







The main purpose of the method (lines 9-16) is to deal with the numerical
solver used for solving the differential equation. In this case we can accept
two architectures: pure python or numba. The option selected will change the
function used to calculate the fluxes. Keep in mind that, since some operations
the python implementation of the fluxes is still used, this must be always
present.

The second method to define is the one that maps the (ordered) list of input
fluxes to a dictionary that gives a name to these fluxes.
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	    def set_input(self, input):

        self.input = {'P': input[0]}







Note that the name (key) of the input flux must be the same used for the
correspondent variable in the flux functions.

The third method to implement is the one that runs the model, solving the
differential equation and returning the output flux.
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	    def get_output(self, solve=True):

        if solve:
            self._solver_states = [self._states[self._prefix_states + 'S0']]
            self._solve_differential_equation()

            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]







The method takes, as input, the parameter solve: if False, the state
array of the reservoir will not be calculated again, potentially producing a
different result, and the output will be computed based on the state that is
already stored. This is the desired behavior in case of post-run inspection of
the element.

Line 4 transforms the states dictionary in an ordered list, line 5 call the
built-in solver of the differential equation, line 7 updates the state of the
model to the one of the updated value, lines 9-14 call the external numerical
solver to get the values of the fluxes (note that, for this operation, the
python implementation of the fluxes is used always).

The last method(s) to implement is the one that defines the fluxes:
in this case the methods are two, one for the python implementation and one for
numba.
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	    @staticmethod
    def _fluxes_function_python(S, S0, ind, P, k):

        if ind is None:
            return (
                [
                    P,
                    - k * S,
                ],
                0.0,
                S0 + P
            )
        else:
            return (
                [
                    P[ind],
                    - k[ind] * S,
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:])',
            nopython=True)
    def _fluxes_function_numba(S, S0, ind, P, k):

        return (
            (
                P[ind],
                - k[ind] * S,
            ),
            0.0,
            S0 + P[ind]
        )







They are both private static methods. Their input consists of the state used to
compute the fluxes (S), initial state (S0, used to define the
maximum possible state for the reservoir), index to use in the arrays
(ind, all inputs are arrays and, when solving for a single time step,
the index indicates the time step to look for), input fluxes (P), and
parameters (k). The output is a tuple containing three elements:


	tuple with the values of the fluxes calculated according to the state;
positive sign for incoming fluxes, negative for outgoing;


	lower bound for the search of the state;


	upper bound for the search of the state;




The implementation for the numba solver differs in two aspects:


	the usage of the numba decorator that defines the types of the input
variables (lines 24-25)


	the fact that the method works only for a single time step and not for the
vectorized solution (use python method for that)







Half-triangular lag function

The half-triangular lag function is a function that has the shape of a right
triangle, growing linearly until \(t_{\textrm{lag}}\) and then zero. The
growth rate (\(\alpha\)) is designed such as the total area of the triangle
is one.


\[\begin{split}& f_{\textrm{lag}}=\alpha t & \quad \textrm{for }t\leq t_{\textrm{lag}}\\
& f_{\textrm{lag}}=0 & \quad \textrm{for }t>t_{\textrm{lag}}\end{split}\]

SuperflexPy provides the class LagElement that contains most of the
functionalities needed to solve a lag function. The class implementing a
customized lag function will inherit from it and implement only the necessary
methods that are needed to calculate the transformation that needs to be
applied to the incoming flux.
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	import numpy as np

class TriangularLag(LagElement):







The only method to implement is the private method used to calculate the
weight array, that is used to distribute the incoming flux.
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	    def _build_weight(self, lag_time):

        weight = []

        for t in lag_time:
            array_length = np.ceil(t)
            w_i = []

            for i in range(int(array_length)):
                w_i.append(self._calculate_lag_area(i + 1, t)
                           - self._calculate_lag_area(i, t))

            weight.append(np.array(w_i))

        return weight







that makes use of a secondary private static method
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	    @staticmethod
    def _calculate_lag_area(bin, len):

        if bin <= 0:
            value = 0
        elif bin < len:
            value = (bin / len)**2
        else:
            value = 1

        return value







This method returns the value of the area of a triangle that is proportional
to the lag function, with a smaller base bin. The
_build_weight method, on the other hand, uses the output of this
function to calculate the weight array.

Note that this choice of using a second static method to calculate the weight
array, while being convenient, is specific to this particular case; other
implementation of the _build_weight method are possible and welcome.




Parameterized splitter

A splitter is an element that takes the flux coming from one element upstream
and divides it to feed multiple elements downstream. Usually, the behavior of
such an element is controlled by some parameters that define the part of the
flux that goes into a specific element.

While SuperflexPy can support infinite fluxes (e.g., for simulating transport
processes) and an infinite number of downstream elements, the simplest case
that we are presenting here has a single flux that gets split into two
downstream elements. In this example, the system needs only one parameter
(\(\alpha_{\textrm{split}}\)) to be defined, with the downstream fluxes
that are


\[\begin{split}& Q_1^{\textrm{out}} = \alpha_{\textrm{split}} Q^{\textrm{in}} \\
& Q_2^{\textrm{out}} = \left(1-\alpha_{\textrm{split}}\right) Q^{\textrm{in}}\end{split}\]

SuperflexPy provides the class ParameterizedElement that is designed for
all the generic elements that are controlled by some parameters but do not have
a state. The class implementing the parameterized splitter will inherit from
this and implement only some methods.
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	from superflexpy.framework.element import ParameterizedElement

class ParameterizedSingleFluxSplitter(ParameterizedElement):







The first thing to define are two private attributes defining how many upstream
and downstream elements the splitter has; this information is used by the unit
when constructing the model structure.

	1
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	    _num_downstream = 2
    _num_upstream = 1







After that we need to define the function that takes the inputs and the one
that calculates the outputs of the splitter.
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	    def set_input(self, input):

        self.input = {'Q_in': input[0]}

    def get_output(self, solve=True):

        split_par = self._parameters[self._prefix_parameters + 'split-par']

        return [
            self.input['Q_in'] * split_par,
            self.input['Q_in'] * (1 - split_par)
        ]







The two methods have the same structure of the one implemented as part of the
linear reservoir example. Note that, in this case, the argument solve of
the get_output method is not used but it is still required to maintain
the interface consistent.
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Expand SuperflexPy: modify the existing components


Adding the routing to a node

The nodes in SuperflexPy are designed to provide the possibility of simulating
the routing process that may happen in a catchment. The routing is a delay
in the fluxes that comes from their propagation within the catchment (internal
routing) and in the river network (external routing).

The default implementation of the node (Node class in
superflexpy.framework.node) does not provide the routing functionality.
Although the methods _internal_routing and external_routing
exist and are integrate in the code, their implementation simply returns
the incoming fluxes without any transformation.

The modeller that wants to implement the routing, therefore, has to implement
a customized node that implements those two methods. The object-oriented
design of SuperflexPy simplifies this operation since the new node class will
inherit all the methods from the original class and has to overwrite only the
two that are responsible of the routing.

We propose here an implementation of the routing that uses a lag function that
has the shape of an isosceles triangle with base t_internal and
t_external, for internal and external routing respectively. The
implementation is similar to the case of the Half-triangular lag function.

The first step to do in the implementation is to import the Node
component from SuperflexPy and implement the class RoutedNode with the
following code
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	from superflexpy.framework.node import Node

class RoutedNone(Node):







We then need to implement the methods _internal_routing and
external_routing. Both the methods receive, as input, a list of fluxes
and return, as output, the same list of fluxes with the delay applied.
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	    def _internal_routing(self, flux):

        t_internal = self.get_parameters(names=[self._prefix_local_parameters + 't_internal'])
        flux_out = []

        for f in flux:
            flux_out.append(self._route(f, t_internal))

        return flux_out

    def external_routing(self, flux):

        t_external = self.get_parameters(names=[self._prefix_local_parameters + 't_external'])
        flux_out = []

        for f in flux:
            flux_out.append(self._route(f, t_external))

        return flux_out







Since, in this simple example, the two routing mechanisms are handled using the
same lag function, the methods take advantage of the method _route
(line 7 and 17) to handle the routing.

The method is implemented with the following code
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	    def _route(self, flux, time):

        state = np.zeros(int(np.ceil(time)))
        weight = self._calculate_weight(time)

        out = []
        for value in flux:
            state = state + weight * value
            out.append(state[0])
            state[0] = 0
            state = np.roll(state, shift=-1)

        return np.array(out)

    def _calculate_weight(self, time):

        weight = []

        array_length = np.ceil(time)

        for i in range(int(array_length)):
            weight.append(self._calculate_lag_area(i + 1, time)
                          - self._calculate_lag_area(i, time))

        return weight

    @staticmethod
    def _calculate_lag_area(portion, time):

        half_time = time / 2

        if portion <= 0:
            value = 0
        elif portion < half_time:
            value = 2 * (portion / time) ** 2
        elif portion < time:
            value = 1 - 2 * ((time - portion) / time)**2
        else:
            value = 1

        return value







Note that all the code in this block is highly similar to the one implemented
in RoutedNode and that, for the implementation of the routing, the only
two methods that are strictly necessary are _internal_routing and
external_routing while all the others are only “support methods” to
these two, needed only to make the code more organized and easier to maintain.
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Application: implementation of existing conceptual models

In this page we propose the implementation of existing conceptual hydrological
models. The translation of a model in SuperflexPy requires the following steps:


	Design of a structure that reflects the original model but satisfy the
requirements of SuperflexPy (e.g. does not contain mutual interaction
between elements);


	Extension of the framework, coding the required elements (as explained in
the page Expand SuperflexPy: build customized elements)


	Construction of the model structure using the elements implemented at point 2





M4 from Kavetski and Fenicia, WRR, 2011

M4 is a simple conceptual model presented, as part of a models comparison study,
in the article


Kavetski, D., and F. Fenicia (2011), Elements of a flexible approach for
conceptual hydrological modeling: 2. Applicationand experimental
insights, WaterResour.Res.,47, W11511, doi:10.1029/2011WR010748.





Design of the structure

The structure of M4 is quite simple and can be implemented directly in
SuperflexPy without the need of using connection elements. The figure shows, on
the left, the structure as shown in the paper and, on the right, the SuperflexPy
implementation. as part of a models comparison study.

[image: _images/M4.png]
The upstream element, the unsaturated reservoir (UR), is designed to represent
runoff generation processes (e.g. separation between evaporation and runoff) and
it is controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} = P -
E_{\textrm{P}} \left( \frac{\frac{S_{\textrm{UR}}}{S_{\textrm{max}}} \left(1+m\right)}{\frac{S_{\textrm{UR}}}{S_{\textrm{max}}} + m} \right) -
P \left(\frac{S_{\textrm{UR}}}{S_{\textrm{max}}}\right)^\beta \\\end{split}\]

The downstream element, the fast reservoir (FR), is designed to represent runoff
propagation processes (e.g. routing) and it is controlled by the differential
equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{FR}}}{\textrm{d}t} = P - kS_{\textrm{FR}}^\alpha \\\end{split}\]

\(S_{\textrm{UR}}\) and \(S_{\textrm{FR}}\) are the states of the
reservoirs, \(P\) is the input flux, \(E_{\textrm{P}}\) is the potential
evapotranspiration, and \(S_{\textrm{max}}\), \(m\), \(\beta\),
\(k\), \(\alpha\) are parameters of the model.




Elements creation

We now report the code used to implement the elements designed in the
previous section. Instruction on how to use the framework to build new
elements can be found in the page Expand SuperflexPy: build customized elements.

Note that for common applications the elements are already available (refer to
the page Elements list) and, therefore, the modeller does not need to
implement the code presented in this section.


Unsaturated reservoir

The element is a reservoir that can be implemented extending the
ODEsElement class.
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	class UnsaturatedReservoir(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._fluxes_function_python]

        if approximation.architecture == 'numba':
            self._fluxes = [self._fluxes_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._fluxes_function_python]

    def set_input(self, input):

        self.input = {'P': input[0],
                      'PET': input[1]}

    def get_output(self, solve=True):

        if solve:
            self._solver_states = [self._states[self._prefix_states + 'S0']]

            self._solve_differential_equation()

            # Update the state
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [-fluxes[0][2]]

    def get_AET(self):

        try:
            S = self.state_array
        except AttributeError:
            message = '{}get_aet method has to be run after running '.format(self._error_message)
            message += 'the model using the method get_output'
            raise AttributeError(message)

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=S,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]

    # PROTECTED METHODS

    @staticmethod
    def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET):

        if ind is None:
            return (
                [
                    P,
                    - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
                    - P * (S / Smax)**beta,
                ],
                0.0,
                S0 + P
            )
        else:
            return (
                [
                    P[ind],
                    - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
                    - P[ind] * (S / Smax[ind])**beta[ind],
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:])',
            nopython=True)
    def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET):

        return (
            (
                P[ind],
                PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
                - P[ind] * (S / Smax[ind])**beta[ind],
            ),
            0.0,
            S0 + P[ind]
        )










Fast reservoir

The element is a reservoir that can be implemented extending the
ODEsElement class.
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	class FastReservoir(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture

        if approximation.architecture == 'numba':
            self._fluxes = [self._fluxes_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._fluxes_function_python]

    # METHODS FOR THE USER

    def set_input(self, input):

        self.input = {'P': input[0]}

    def get_output(self, solve=True):

        if solve:
            self._solver_states = [self._states[self._prefix_states + 'S0']]
            self._solve_differential_equation()

            # Update the state
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,  # I can use the python method since it is fast
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]

    # PROTECTED METHODS

    @staticmethod
    def _fluxes_function_python(S, S0, ind, P, k, alpha):

        if ind is None:
            return (
                [
                    P,
                    - k * S**alpha,
                ],
                0.0,
                S0 + P
            )
        else:
            return (
                [
                    P[ind],
                    - k[ind] * S**alpha[ind],
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:])',
            nopython=True)
    def _fluxes_function_numba(S, S0, ind, P, k, alpha):

        return (
            (
                P[ind],
                - k[ind] * S**alpha[ind],
            ),
            0.0,
            S0 + P[ind]
        )












Model initialization

Now that all the elements needed have been implemented, we can put them
together to build the model structure. For details refer to Quick demo.

The first step consists in initializing all the elements.
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	root_finder = PegasusPython()
numeric_approximator = ImplicitEulerPython(root_finder=root_finder)

ur = UnsaturatedReservoir(
    parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
    states={'S0': 25.0},
    approximation=numeric_approximator,
    id='UR'
)

fr = FastReservoir(
    parameters={'k': 0.1, 'alpha': 1.0},
    states={'S0': 10.0},
    approximation=numeric_approximator,
    id='FR'
)







After that, the elements can be put together to create a Unit that
reflects the structure presented in the figure.
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	model = Unit(
    layers=[
        [ur],
        [fr]
    ],
    id='M4'
)












GR4J

GR4J is a conceptual hydrological model originally introduced in the article


Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, Journal of Hydrology,
279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.




The solution adopted here follows the “continuous state-space representation”
presented in


Santos, L., Thirel, G., and Perrin, C.: Continuous state-space
representation of a bucket-type rainfall-runoff model: a case study
with the GR4 model using state-space GR4 (version 1.0), Geosci. Model
Dev., 11, 1591-1605, 10.5194/gmd-11-1591-2018, 2018.





Design of the structure

The figure shows, on the left, the model structure as proposed in Perrin et
al., 2003 and, on the right, the adaptation to SuperflexPy

[image: _images/gr4j.png]
In the original version, the potential evaporation and the precipitation
are “filtered” by an interception layer that sets the smallest of the two fluxes
to zero and the biggest to the difference between the two.


\[\begin{split}& \textrm{if } P > PE:  \\
& \quad P_{\textrm{NET}} = P -PE \\
& \quad E_{\textrm{NET}}=0 \\
& \textrm{else}: \\
& \quad P_{\textrm{NET}} = 0 \\
& \quad E_{\textrm{NET}}=PE-P \\\end{split}\]

This element is reproduced identically in the SuperflexPy implementation by the
“interception filter”

In the original model, the precipitation is split between a portion \(P_s\)
that flows into the production store and the remaining part \(P_b\) that
bypasses the reservoir. Since \(P_s\) and \(P_b\) are function of the
state of the reservoir


\[\begin{split}& P_s=P_{\textrm{NET}}\left(1-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha}\right) \\
& P_b=P_{\textrm{NET}}\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha} \\\end{split}\]

when we implement this part of the model in SuperflexPy, these two fluxes
cannot be calculated before solving the reservoir. For this reason, in the
SuperflexPy implementation of GR4J, all the precipitation flows into an element
that incorporates the production store; this element takes care of dividing the
precipitation internally, while solving the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} =  P_{\textrm{NET}}\left(1-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^{\alpha}\right)
  - E_{\textrm{NET}}\left(2\frac{S_{\textrm{UR}}}{x_1}-\left(\frac{S_{\textrm{UR}}}{x_1}\right)^\alpha\right)-
  \frac{x_1^{1-\beta}}{(\beta-1)} \nu^{\beta-1}S_{\textrm{UR}}^\beta \\\end{split}\]

where the first term is the precipitation \(P_s\), the second term is the
actual evaporation, and the third term represent the output of the reservoir,
called “percolation”.

Once the reservoir is solved (i.e. the values of \(S_{\textrm{UR}}\) that
solve the differential equation are found), the element outputs the sum of
percolation and bypassing precipitation \(P_b\)

After this, the flux is divided between two lag functions (called “unit
hydrograph”, abbreviated UH): 90% of the flux goes to UH1 while the 10% goes
to UH2. In this part of the structure there is a strict correspondence
between the elements of GR4J and their SuperflexPy implementation.

The output of UH1 represents the input of the routing store, a reservoir that
is controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{RR}}}{\textrm{d}t}=Q_{\textrm{UH1}} -
\frac{x_3^{1-\gamma}}{(\gamma-1)}S_{\textrm{RR}}^\gamma-
\frac{x_2}{x_3^\omega}S_{\textrm{RR}}^\omega\\\end{split}\]

where the second term is the output of the reservoir and the last is a
gain/loss term (called \(Q_{\textrm{RF}}\)).

The gain/loss term \(Q_{\textrm{RF}}\), which is a function of the state
\(S_{\textrm{RR}}\) of the reservoir, is subtracted also to the output of
UH2: in SuperflexPy, this operation cannot be done together with the solution of
the routing store but it is done afterwards. For this reason, the SuperflexPy
implementation of GR4J has an additional element (called “flux aggregator”) that
collects (through a junction element) the output of the routing store, the
gain/loss term, and the output of UH2 and computes the outflow of the model
using the equation


\[\begin{split}& Q = Q_{\textrm{RR}} + \max(0;Q_{\textrm{UH2}} - Q_{\textrm{RF}}) \\\end{split}\]




Elements creation

We now report the code used to implement the elements designed in the
previous section. Instruction on how to use the framework to build new
elements can be found in the page Expand SuperflexPy: build customized elements.

Note that for common applications the elements are already available (refer to
the page Elements list) and, therefore, the modeller does not need to
implement the code presented in this section.


Interception

The interception filter can be implemented extending the class
BaseElement
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	class InterceptionFilter(BaseElement):

    _num_upstream = 1
    _num_downstream = 1

    def set_input(self, input):

        self.input = {}
        self.input['PET'] = input[0]
        self.input['P'] = input[1]

    def get_output(self, solve=True):

        remove = np.minimum(self.input['PET'], self.input['P'])

        return [self.input['PET'] - remove, self.input['P'] - remove]










Production store

The production store is controlled by a differential equation and, therefore,
it can be constructed extending the class ODEsElement
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	class ProductionStore(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._flux_function_python]

        if approximation.architecture == 'numba':
            self._fluxes = [self._flux_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._flux_function_python]

    def set_input(self, input):

        self.input = {}
        self.input['PET'] = input[0]
        self.input['P'] = input[1]

    def get_output(self, solve=True):

        if solve:
            # Solve the differential equation
            self._solver_states = [self._states[self._prefix_states + 'S0']]
            self._solve_differential_equation()

            # Update the states
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          dt=self._dt,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        Pn_minus_Ps = self.input['P'] - fluxes[0][0]
        Perc = - fluxes[0][2]
        return [Pn_minus_Ps + Perc]

    def get_aet(self):

        try:
            S = self.state_array
        except AttributeError:
            message = '{}get_aet method has to be run after running '.format(self._error_message)
            message += 'the model using the method get_output'
            raise AttributeError(message)

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=S,
                                          S0=self._solver_states,
                                          dt=self._dt,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]

    @staticmethod
    def _flux_function_python(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):

        if ind is None:
            return(
                [
                    P * (1 - (S / x1)**alpha),  # Ps
                    - PET * (2 * (S / x1) - (S / x1)**alpha),  # Evaporation
                    - ((x1**(1 - beta)) / ((beta - 1) * dt)) * (ni**(beta - 1)) * (S**beta)  # Perc
                ],
                0.0,
                S0 + P * (1 - (S / x1)**alpha)
            )
        else:
            return(
                [
                    P[ind] * (1 - (S / x1[ind])**alpha[ind]),  # Ps
                    - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]),  # Evaporation
                    - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1) * dt[ind])) * (ni[ind]**(beta[ind] - 1)) * (S**beta[ind])  # Perc
                ],
                0.0,
                S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind])
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
            nopython=True)
    def _flux_function_numba(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):

        return(
            (
                P[ind] * (1 - (S / x1[ind])**alpha[ind]),  # Ps
                - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]),  # Evaporation
                - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1) * dt[ind])) * (ni[ind]**(beta[ind] - 1)) * (S**beta[ind])  # Perc
            ),
            0.0,
            S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind])
        )










Unit hydrographs

The unit hydrographs are an extension of the LagElement and they can
be implemented with the following code
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	class UnitHydrograph1(LagElement):

    def __init__(self, parameters, states, id):

        LagElement.__init__(self, parameters, states, id)

    def _build_weight(self, lag_time):

        weight = []

        for t in lag_time:
            array_length = np.ceil(t)
            w_i = []
            for i in range(int(array_length)):
                w_i.append(self._calculate_lag_area(i + 1, t)
                           - self._calculate_lag_area(i, t))
            weight.append(np.array(w_i))

        return weight

    @staticmethod
    def _calculate_lag_area(bin, len):
        if bin <= 0:
            value = 0
        elif bin < len:
            value = (bin / len)**2.5
        else:
            value = 1
        return value
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	class UnitHydrograph2(LagElement):

    def __init__(self, parameters, states, id):

        LagElement.__init__(self, parameters, states, id)

    def _build_weight(self, lag_time):

        weight = []

        for t in lag_time:
            array_length = np.ceil(t)
            w_i = []
            for i in range(int(array_length)):
                w_i.append(self._calculate_lag_area(i + 1, t)
                           - self._calculate_lag_area(i, t))
            weight.append(np.array(w_i))

        return weight

    @staticmethod
    def _calculate_lag_area(bin, len):
        half_len = len / 2
        if bin <= 0:
            value = 0
        elif bin < half_len:
            value = 0.5 * (bin / half_len)**2.5
        elif bin < len:
            value = 1 - 0.5 * (2 - bin / half_len)**2.5
        else:
            value = 1
        return value










Routing store

The routing store is an ODEsElement
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	class RoutingStore(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._flux_function_python]

        if approximation.architecture == 'numba':
            self._fluxes = [self._flux_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._flux_function_python]

    def set_input(self, input):

        self.input = {}
        self.input['P'] = input[0]

    def get_output(self, solve=True):

        if solve:
            # Solve the differential equation
            self._solver_states = [self._states[self._prefix_states + 'S0']]
            self._solve_differential_equation()

            # Update the states
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          dt=self._dt,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        Qr = - fluxes[0][1]
        F = -fluxes[0][2]

        return [Qr, F]

    @staticmethod
    def _flux_function_python(S, S0, ind, P, x2, x3, gamma, omega, dt):

        if ind is None:
            return(
                [
                    P,  # P
                    - ((x3**(1 - gamma)) / ((gamma - 1) * dt)) * (S**gamma),  # Qr
                    - (x2 * (S / x3)**omega),  # F
                ],
                0.0,
                S0 + P
            )
        else:
            return(
                [
                    P[ind],  # P
                    - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1) * dt[ind])) * (S**gamma[ind]),  # Qr
                    - (x2[ind] * (S / x3[ind])**omega[ind]),  # F
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',
            nopython=True)
    def _flux_function_numba(S, S0, ind, P, x2, x3, gamma, omega, dt):

        return(
            (
                P[ind],  # P
                - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1) * dt[ind])) * (S**gamma[ind]),  # Qr
                - (x2[ind] * (S / x3[ind])**omega[ind]),  # F
            ),
            0.0,
            S0 + P[ind]
        )










Flux aggregator

The flux aggregator can be implemented extending a BaseElement
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	class FluxAggregator(BaseElement):

    _num_downstream = 1
    _num_upstream = 1

    def set_input(self, input):

        self.input = {}
        self.input['Qr'] = input[0]
        self.input['F'] = input[1]
        self.input['Q2_out'] = input[2]

    def get_output(self, solve=True):

        return [self.input['Qr']
                + np.maximum(0, self.input['Q2_out'] - self.input['F'])]












Model initialization

Now that all the elements needed have been implemented, we can put them
together to build the model structure. For details refer to Quick demo.

The first step consists in initializing all the elements.
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	x1, x2, x3, x4 = (50.0, 0.1, 20.0, 3.5)

root_finder = PegasusPython()  # Use the default parameters
numerical_approximation = ImplicitEulerPython(root_finder)

interception_filter = InterceptionFilter(id='ir')

production_store = ProductionStore(parameters={'x1': x1, 'alpha': 2.0,
                                               'beta': 5.0, 'ni': 4/9},
                                   states={'S0': 10.0},
                                   approximation=numerical_approximation,
                                   id='ps')

splitter = Splitter(weight=[[0.9], [0.1]],
                    direction=[[0], [0]],
                    id='spl')

unit_hydrograph_1 = UnitHydrograph1(parameters={'lag-time': x4},
                                    states={'lag': None},
                                    id='uh1')

unit_hydrograph_2 = UnitHydrograph2(parameters={'lag-time': 2*x4},
                                    states={'lag': None},
                                    id='uh2')

routing_store = RoutingStore(parameters={'x2': x2, 'x3': x3,
                                         'gamma': 5.0, 'omega': 3.5},
                             states={'S0': 10.0},
                             approximation=numerical_approximation,
                             id='rs')

transparent = Transparent(id='tr')

junction = Junction(direction=[[0, None],  # First output
                               [1, None],  # Second output
                               [None, 0]], # Third output
                    id='jun')

flux_aggregator = FluxAggregator(id='fa')







After that, the elements can be put together to create a Unit that
reflects the structure presented in the figure.

	1
2
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8

	model = Unit(layers=[[interception_filter],
                     [production_store],
                     [splitter],
                     [unit_hydrograph_1, unit_hydrograph_2],
                     [routing_store, transparent],
                     [junction],
                     [flux_aggregator]],
             id='model')












HYMOD

HYMOD is a conceptual hydrological model presented in the Ph.D. thesis


Boyle, D. P. (2001). Multicriteria calibration of hydrologic models,
The University of Arizona. Link [http://hdl.handle.net/10150/290657]




The solution proposed here follows the model structure presented in


Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.,
and Sorooshian, S.: A framework for development and application of
hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26,
https://doi.org/10.5194/hess-5-13-2001, 2001.





Design of the structure

[image: _images/hymod.png]
The structure of HYMOD is composed by three blocks of reservoirs that are
designed to represent three mechanism that control the streamflow at the
catchment scale: upper zone (soil dynamics), channel routing (surface runoff),
and lower zone (subsurface flow).

As it can be seen in the figure, the original structure of HYMOD already
satisfy the design constrains of SuperflexPy and therefore it can be
implemented simply translating the single elements individually, without
the need of workarounds, as done in the case of GR4J.

The first element (upper zone) is a reservoirs intended to represent soil
dynamics that simulates streamflow generation processes and evaporation. It is
controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S_{\textrm{UR}}}{\textrm{d}t} = P - E -
P \left(1 - \left(1-\frac{S_{\textrm{UR}}}{S_{\textrm{max}}}\right)^\beta\right) \\\end{split}\]

where the first term represent the precipitation input, the second the
actual evaporation (which is equal to the potential evaporation as long as
there is sufficient storage in the reservoir) and the third the outflow of the
reservoir.

The outflow of the reservoir is then split between the channel routing and the
lower zone; these are all represented by some linear reservoirs that are
controlled by the differential equation


\[\begin{split}& \frac{\textrm{d}S}{\textrm{d}t} = P - kS \\\end{split}\]

where the first term is the input of the reservoir (the outflow of the
upstream element, in this case) and the second term represent the outflow of
the reservoir.

Channel routing and lower zone differentiate one from the other by two
factors: the number of reservoirs used (3 in the first case and 1 in the
second) and by the value of the parameter \(k\), which controls the outflow
rate, that is bigger for the channel routing.

The output of these two branches of the model are collected together by a
junction, which sums them to generate the output of the model.

Comparing the two panels in the figure, the only difference is due to the
presence of the two transparent element that are needed to fill the gaps that,
otherwise, will be present in the structure.




Elements creation

We now report the code used to implement the elements designed in the
previous section. Instruction on how to use the framework to build new
elements can be found in the page Expand SuperflexPy: build customized elements.

Note that for common applications the elements are already available (refer to
the page Elements list) and, therefore, the modeller does not need to
implement the code presented in this section.


Upper zone

The code used to simulate the upper zone present a change in the equation used
to calculate the actual evaporation. In the original version (Wagener et al.,
2001) the equation is “described” in the text


The actual evapotranspiration is equal to the potential value if
sufficient soil moisture is available; otherwise it is equal to the
available soil moisture content.




which translates to the equation


\[\begin{split}& \textrm{if } S > 0:  \\
& \quad E = PE \\
& \textrm{else}: \\
& \quad E=0 \\\end{split}\]

Unfortunately this solution is not smooth and this can cause some computational
problems. For this reason, it has been decided to use the following equation to
calculate the potential evaporation


\[\begin{split}& E=PE\left( \frac{\frac{S_{\textrm{UR}}}{S_{\textrm{max}}}(1+\theta)}{\frac{S_{\textrm{UR}}}{S_{\textrm{max}}}+\theta} \right)\\\end{split}\]

The upper zone reservoir can be implemented extending the ODEsElement
class.
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	class UpperZone(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._fluxes_function_python]

        if approximation.architecture == 'numba':
            self._fluxes = [self._fluxes_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._fluxes_function_python]

    def set_input(self, input):

        self.input = {'P': input[0],
                      'PET': input[1]}

    def get_output(self, solve=True):

        if solve:
            self._solver_states = [self._states[self._prefix_states + 'S0']]

            self._solve_differential_equation()

            # Update the state
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [-fluxes[0][2]]

    def get_AET(self):

        try:
            S = self.state_array
        except AttributeError:
            message = '{}get_aet method has to be run after running '.format(self._error_message)
            message += 'the model using the method get_output'
            raise AttributeError(message)

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
                                          S=S,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]

    # PROTECTED METHODS

    @staticmethod
    def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET):

        if ind is None:
            return (
                [
                    P,
                    - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
                    - P * (1 - (1 - (S / Smax))**beta),
                ],
                0.0,
                S0 + P
            )
        else:
            return (
                [
                    P[ind],
                    - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
                    - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:], f8[:], f8[:], f8[:])',
            nopython=True)
    def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET):

        return (
            (
                P[ind],
                - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) + m[ind]),
                - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
            ),
            0.0,
            S0 + P[ind]
        )










Channel routing and lower zone

All the elements belonging to the channel routing and to the lower zone are
reservoirs that can be implemented extending the ODEsElement class.
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	class LinearReservoir(ODEsElement):

    def __init__(self, parameters, states, approximation, id):

        ODEsElement.__init__(self,
                             parameters=parameters,
                             states=states,
                             approximation=approximation,
                             id=id)

        self._fluxes_python = [self._fluxes_function_python]  # Used by get fluxes, regardless of the architecture

        if approximation.architecture == 'numba':
            self._fluxes = [self._fluxes_function_numba]
        elif approximation.architecture == 'python':
            self._fluxes = [self._fluxes_function_python]

    # METHODS FOR THE USER

    def set_input(self, input):

        self.input = {'P': input[0]}

    def get_output(self, solve=True):

        if solve:
            self._solver_states = [self._states[self._prefix_states + 'S0']]
            self._solve_differential_equation()

            # Update the state
            self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})

        fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,  # I can use the python method since it is fast
                                          S=self.state_array,
                                          S0=self._solver_states,
                                          **self.input,
                                          **{k[len(self._prefix_parameters):]: self._parameters[k] for k in self._parameters},
                                          )

        return [- fluxes[0][1]]

    # PROTECTED METHODS

    @staticmethod
    def _fluxes_function_python(S, S0, ind, P, k):

        if ind is None:
            return (
                [
                    P,
                    - k * S,
                ],
                0.0,
                S0 + P
            )
        else:
            return (
                [
                    P[ind],
                    - k[ind] * S,
                ],
                0.0,
                S0 + P[ind]
            )

    @staticmethod
    @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:])',
            nopython=True)
    def _fluxes_function_numba(S, S0, ind, P, k):

        return (
            (
                P[ind],
                - k[ind] * S,
            ),
            0.0,
            S0 + P[ind]
        )












Model initialization

Now that all the elements needed have been implemented, we can put them
together to build the model structure. For details refer to Quick demo.

The first step consists in initializing all the elements.
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	root_finder = PegasusPython()  # Use the default parameters
numerical_approximation = ImplicitEulerPython(root_finder)

upper_zone = UpperZone(parameters={'Smax': 50.0, 'm': 0.01, 'beta': 2.0},
                       states={'S0': 10.0},
                       approximation=numerical_approximation,
                       id='uz')

splitter = Splitter(weight=[[0.6], [0.4]],
                    direction=[[0], [0]],
                    id='spl')

channel_routing_1 = LinearReservoir(parameters={'k': 0.1},
                                    states={'S0': 10.0},
                                    approximation=numerical_approximation,
                                    id='cr1')

channel_routing_2 = LinearReservoir(parameters={'k': 0.1},
                                    states={'S0': 10.0},
                                    approximation=numerical_approximation,
                                    id='cr2')

channel_routing_3 = LinearReservoir(parameters={'k': 0.1},
                                    states={'S0': 10.0},
                                    approximation=numerical_approximation,
                                    id='cr3')

lower_zone = LinearReservoir(parameters={'k': 0.1},
                             states={'S0': 10.0},
                             approximation=numerical_approximation,
                             id='lz')

transparent_1 = Transparent(id='tr1')

transparent_2 = Transparent(id='tr2')

junction = Junction(direction=[[0, 0]],  # First output
                    id='jun')







After that, the elements can be put together to create a Unit that
reflects the structure presented in the figure.

	1
2
3
4
5
6
7

	model = Unit(layers=[[upper_zone],
                     [splitter],
                     [channel_routing_1, lower_zone],
                     [channel_routing_2, transparent_1],
                     [channel_routing_3, transparent_2],
                     [junction]],
             id='model')
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Case studies

In this page we propose the model configurations used in publications.


Dal Molin et al., 2020, HESS

This section contains instructions for the implementation of the
semi-distributed hydrological model M02 presented in the article:

Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Understanding
dominant controls on streamflow spatial variability to set up a
semi-distributed hydrological model: the case study of the Thur catchment,
Hydrol. Earth Syst. Sci., 24, 1319–1345,
https://doi.org/10.5194/hess-24-1319-2020, 2020.

In this application, the Thur catchment has been divided in 10 subcatchments
and 2 hydrological response units (HRUs). Please refer to the article for the
details; here we propose only the code needed to setup a model that corresponds
to the one used in the publication.


Model structure

The two HRUs are represented using the same model structure represented in the
figure.

[image: _images/model_structure_thur.png]
The structure is similar to the one of HYMOD; its conversion to
SuperflexPy is presented here

[image: _images/ThurHESS2020.png]
Note that also the temperature has been threated as a flux: this choice is not
forced by the framework but, in this particular case, where it is the first
element that needs it, this is particularly convenient. An alternative solution
would have been designing the snow reservoir in such a way that the temperature
becomes a state of the reservoir; this solution would have been preferable in
the case where the element that needed the flux was not at the beginning of the
structure.




Defining the elements

We here assume that all the elements are already existing; therefore they just
need to be imported.

	1
2
3
4

	from superflexpy.implementation.elements.thur_model_hess import SnowReservoir, UnsaturatedReservoir, HalfTriangularLag, FastReservoir
from superflexpy.implementation.elements.structure_elements import Transparent, Junction, Splitter
from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython







After this, all the elements must be initialized, defining the initial state
and the parameters.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	solver = PegasusPython()
approximator = ImplicitEulerPython(root_finder=solver)

upper_splitter = Splitter(
    direction=[
        [0, 1, None],    # P and T go to the snow reservoir
        [2, None, None]  # PET goes to the transparent element
    ],
    weight=[
        [1.0, 1.0, 0.0],
        [0.0, 0.0, 1.0]
    ],
    id='upper-splitter'
)

snow = SnowReservoir(
    parameters={'t0': 0.0, 'k': 0.01, 'm': 2.0},
    states={'S0': 0.0},
    approximation=approximator,
    id='snow'
)

upper_transparent = Transparent(
    id='upper-transparent'
)

upper_junction = Junction(
    direction=[
        [0, None],
        [None, 0]
    ],
    id='upper-junction'
)

unsaturated = UnsaturatedReservoir(
    parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
    states={'S0': 10.0},
    approximation=approximator,
    id='unsaturated'
)

lower_splitter = Splitter(
    direction=[
        [0],
        [0]
    ],
    weight=[
        [0.3],   # Portion to slow reservoir
        [0.7]    # Portion to fast reservoir
    ],
    id='lower-splitter'
)

lag_fun = HalfTriangularLag(
    parameters={'lag-time': 2.0},
    states={'lag': None},
    id='lag-fun'
)

fast = FastReservoir(
    parameters={'k': 0.01, 'alpha': 3.0},
    states={'S0': 0.0},
    approximation=approximator,
    id='fast'
)

slow = FastReservoir(
    parameters={'k': 1e-4, 'alpha': 1.0},
    states={'S0': 0.0},
    approximation=approximator,
    id='slow'
)

lower_transparent = Transparent(
    id='lower-transparent'
)

lower_junction = Junction(
    direction=[
        [0, 0]
    ],
    id='lower-junction'
)










Defining the HRUs structure

Once all the elements have been created we can connect them composing the two
HRUs.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	consolidated = Unit(
    layers=[
        [upper_splitter],
        [snow, upper_transparent],
        [upper_junction],
        [unsaturated],
        [lower_splitter],
        [slow, lag_fun],
        [lower_transparent, fast],
        [lower_junction],
    ],
    id='consolidated'
)

unconsolidated = Unit(
    layers=[
        [upper_splitter],
        [snow, upper_transparent],
        [upper_junction],
        [unsaturated],
        [lower_splitter],
        [slow, lag_fun],
        [lower_transparent, fast],
        [lower_junction],
    ],
    id='unconsolidated'
)










Defining the catchments

Now that the HRUs have been created, we need to assign them to the catchments
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57
58
59
60
61
62
63
64
65
66
67
68
69

	andelfingen = Node(
    units=[consolidated, unconsolidated],
    weights=[0.24, 0.76],
    area=403.3,
    id='andelfingen'
)

appenzell = Node(
    units=[consolidated, unconsolidated],
    weights=[0.92, 0.08],
    area=74.4,
    id='appenzell'
)

frauenfeld = Node(
    units=[consolidated, unconsolidated],
    weights=[0.49, 0.51],
    area=134.4,
    id='frauenfeld'
)

halden = Node(
    units=[consolidated, unconsolidated],
    weights=[0.34, 0.66],
    area=314.3,
    id='halden'
)

herisau = Node(
    units=[consolidated, unconsolidated],
    weights=[0.88, 0.12],
    area=16.7,
    id='herisau'
)

jonschwil = Node(
    units=[consolidated, unconsolidated],
    weights=[0.9, 0.1],
    area=401.6,
    id='jonschwil'
)

mogelsberg = Node(
    units=[consolidated, unconsolidated],
    weights=[0.92, 0.08],
    area=88.1,
    id='mogelsberg'
)

mosnang = Node(
    units=[consolidated],
    weights=[1.0],
    area=3.1,
    id='mosnang'
)

stgallen = Node(
    units=[consolidated, unconsolidated],
    weights=[0.87, 0.13],
    area=186.6,
    id='stgallen'
)

waengi = Node(
    units=[consolidated, unconsolidated],
    weights=[0.63, 0.37],
    area=78.9,
    id='waengi'
)







Note that all the catchments incorporate the information about their area that
will then be used by the network.

Not all the catchment must have all the HRUs; if an HRU is not present in a
catchment (e.g. unconsolidated in Mosnang, line 50) it can be simply omitted.




Defining the network

The last step consists in creating the network that connects all the catchments
previously declared.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	model = Network(
    nodes=[
        andelfingen,
        appenzell,
        frauenfeld,
        halden,
        herisau,
        jonschwil,
        mogelsberg,
        mosnang,
        stgallen,
        waengi,
    ],
    topography={
        'andelfingen': None,
        'appenzell': 'stgallen',
        'frauenfeld': 'andelfingen',
        'halden': 'andelfingen',
        'herisau': 'halden',
        'jonschwil': 'halden',
        'mogelsberg': 'jonschwil',
        'mosnang': 'jonschwil',
        'stgallen': 'halden',
        'waengi': 'frauenfeld',
    }
)










Running the model

Now that all the components have been initialized, we can run the model.

The first step is to assign the input fluxes to the single elements. For this
we assume that the data is available as a pandas DataFrame and that the
columns are named P_name_of_the_catchment,
T_name_of_the_catchment, and PET_name_of_the_catchment.

The inputs can be set using a for loop

	1
2
3
4
5
6

	for cat, cat_name in zip(catchments, catchments_names):
    cat.set_input([
        df['P_{}'.format(cat_name)].values,
        df['T_{}'.format(cat_name)].values,
        df['PET_{}'.format(cat_name)].values,
    ])







After this, the last thing to be done before actually running the model is
setting the time step used in the simulations. This can be done directly at
the network level and it will be set to all the components.

	1

	thur_catchment.set_timestep(1.0)







The only thing left to do is running the model!

	1

	thur_catchment.get_output()
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Examples

The following examples are available as Jupyter notebooks that can be either
visualized on GitHub or run in a sandbox environment.


	Run a simple model run - visualize


	Calibrate a model run - visualize


	Initialize a single element model run - visualize


	Initialize a single unit model: run - visualize


	Initialize a simple node model: run - visualize


	Initialize a complete (network) model: run - visualize


	Create a new reservoir: run - visualize


	Replicate GR4J: run - visualize


	Replicate Hymod: run - visualize


	Replicate M02 in Dal Molin et al., HESS, 2020: run - visualize


	Replicate M4 in Kavetski and Fenicia, WRR, 2011: run - visualize


	Modify M4 in Kavetski and Fenicia, WRR, 2011: run - visualize
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Reference

This reference provides details about the API of SuperflexPy. This page is
limited to the framework; particular implementations of elements or components
are not included for brevity


superflexpy.framework.element




superflexpy.utils.generic_component




superflexpy.framework.unit




superflexpy.framework.node




superflexpy.framework.network




superflexpy.utils.root_finder




superflexpy.utils.numerical_approximator
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Change log


Version 1.0.0

Version 1.0.0 represents the first mature release of SuperflexPy. Many things
have changed since previous 0.* releases both in terms of code organization
and conceptualization of the framework. For this reason, models built with
versions 0.* are not compatible.


Major changes to existing components


	New numerical solver structure for elements controlled by ordinary
differential equations (ODEs). A new component, the
NumericaApproximator is introduced; its task it to get the fluxes from
the elements and construct an approximation of the ODEs. In the previous
release of the framework the approximation was hard coded in the element
implementation.


	ODEsElement have now to implement the methods _fluxes and
_fluxes_python instead of _differential_equation


	Added the possibility for nodes and units to have local states and parameters.
To this end, some internal functionalities for finding the element given the
id have been changed to account for the presence of states and
parameters at a level higher then the elements.







Minor changes to existing components


	Added implicit or explicit check at initialization of units, nodes, and
network that the components that they contain are of the right type (e.g. a
node must contain units)


	Some minor changes to the RootFinder to accommodate the new numerical
implementation.


	Added numba implementation to GR4J elements







New code


	Added hymod elements
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